• Treffer 1 von 2
Zurück zur Trefferliste

The interplay of thio(seleno)amide/vinylogous thio(seleno)amide "Resonance" and the anisotropic effect of thiocarbonyl and selenocarbonyl functional groups

  • [GRAPHICS] Amino-substituted thio(seleno)acrylamides 1-4 were synthesized and their H-1 and C-13 NMR spectra assigned. Both the NMR data and the results of theoretical calculations at the ab initio level of theory were employed to elucidate the adopted structures of the compounds in terms of E/Z isomerism and s-cis/s-trans configuration. In the case of the asymmetrically N(Me)Ph-substituted compounds, ab initio GIAO-calculated ring current effects of the N-phenyl group were applied to successfully determine the preferred conformer bias. The restricted rotations about the two C-N partial double bonds were studied by DNMR and the barriers to rotation (Delta G(c)(double dagger)) determined at the coalescence temperatures, and these were discussed with respect to the structural differences between the compounds. The barriers to rotation were also calculated at the ab initio level of theory where the best results (R-2 = 0.8746) were obtained only with inclusion of the solvent at the SCIPCMHF/6-31G* level of theory. The calculations also[GRAPHICS] Amino-substituted thio(seleno)acrylamides 1-4 were synthesized and their H-1 and C-13 NMR spectra assigned. Both the NMR data and the results of theoretical calculations at the ab initio level of theory were employed to elucidate the adopted structures of the compounds in terms of E/Z isomerism and s-cis/s-trans configuration. In the case of the asymmetrically N(Me)Ph-substituted compounds, ab initio GIAO-calculated ring current effects of the N-phenyl group were applied to successfully determine the preferred conformer bias. The restricted rotations about the two C-N partial double bonds were studied by DNMR and the barriers to rotation (Delta G(c)(double dagger)) determined at the coalescence temperatures, and these were discussed with respect to the structural differences between the compounds. The barriers to rotation were also calculated at the ab initio level of theory where the best results (R-2 = 0.8746) were obtained only with inclusion of the solvent at the SCIPCMHF/6-31G* level of theory. The calculations also provided means of assessing structural influences which were not available due to inaccessible rotation barriers. By means of natural bond orbital (NBO) analysis of 1-4, the occupation numbers of nitrogen lone pairs and bonding/antibonding pi/pi* orbitals were shown to quantitatively describe thio(seleno)amide/vinylogous thio(seleno)amide "resonance". Finally, the thio(seleno)carbonyl anisotropic effect was quantitatively calculated by the GIRO method and visualized by isochemical shielding surfaces (ICSS). Only marginal differences between the two anisotropic effects were calculated and are therefore of questionable utility for previous and future applications with respect to stereochemical assignmentszeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Erich KleinpeterORCiDGND, Anja Schulenburg, Ines Zug, Horst Hartmann
ISSN:0022-3263
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2005
Erscheinungsjahr:2005
Datum der Freischaltung:24.03.2017
Quelle:Journal of Organic Chemistry. - ISSN 0022-3263. - 70 (2005), 17, S. 6592 - 6602
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert
Name der Einrichtung zum Zeitpunkt der Publikation:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Organische Chemie und Strukturanalytik
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.