• Treffer 1 von 1
Zurück zur Trefferliste

Phagocytosis of spherical and ellipsoidal micronetwork colloids from crosslinked poly(epsilon-caprolactone)

  • The effect of non-spherical particle shapes on cellular uptake has been reported as a general design parameter to control cellular recognition of particulate drug carriers. Beside shape, also size and cell-particle ratio should mutually effect phagocytosis. Here, the capability to control cellular uptake of poly(epsilon-caprolactone) (PCL) based polymer micronetwork colloids (MNC), a carrier system that can be transferred to various shapes, is explored in vitro at test conditions allowing multiple cell-particle contacts. PCL-based MNC were synthesized as spheres with a diameter of similar to 6, similar to 10, and 13 mu m, loaded with a fluorescent dye by a specific technique of swelling, redispersion and drying, and transferred into different ellipsoidal shapes by a phantom stretching method. The boundaries of MNC deformability to prolate ellipsoid target shapes were systematically analyzed and found to be at an aspect ratio AR of similar to 4 as obtained by a phantom elongation epsilon(ph) of similar to 150%. Uptake studies with aThe effect of non-spherical particle shapes on cellular uptake has been reported as a general design parameter to control cellular recognition of particulate drug carriers. Beside shape, also size and cell-particle ratio should mutually effect phagocytosis. Here, the capability to control cellular uptake of poly(epsilon-caprolactone) (PCL) based polymer micronetwork colloids (MNC), a carrier system that can be transferred to various shapes, is explored in vitro at test conditions allowing multiple cell-particle contacts. PCL-based MNC were synthesized as spheres with a diameter of similar to 6, similar to 10, and 13 mu m, loaded with a fluorescent dye by a specific technique of swelling, redispersion and drying, and transferred into different ellipsoidal shapes by a phantom stretching method. The boundaries of MNC deformability to prolate ellipsoid target shapes were systematically analyzed and found to be at an aspect ratio AR of similar to 4 as obtained by a phantom elongation epsilon(ph) of similar to 150%. Uptake studies with a murine macrophages cell line showed shape dependency of phagocytosis for selected conditions when varying particle sizes (similar to 6 and 10 mu m),and shapes (epsilon(ph): 0, 75 or 150%), cell-particle ratios (1:1, 1:2, 1:10, 1:50), and time points (1-24 h). For larger-sized MNC, there was no significant shape effect on phagocytosis as these particles may associate with more than one cell, thus increasing the possibility of phagocytosis by any of these cells. Accordingly, controlling shape effects on phagocytosis for carriers made from degradable polymers relevant for medical applications requires considering further parameters besides shape, such as kinetic aspects of the exposure and uptake by cells.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Fabian FriessGND, Toralf RochORCiD, Barbara Seifert, Andreas LendleinORCiDGND, Christian WischkeORCiDGND
DOI:https://doi.org/10.1016/j.ijpharm.2019.118461
ISSN:0378-5173
ISSN:1873-3476
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/31247276
Titel des übergeordneten Werks (Englisch):International Journal of Pharmaceutics
Verlag:Elsevier
Verlagsort:Amsterdam
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Erscheinungsjahr:2019
Datum der Freischaltung:30.11.2020
Freies Schlagwort / Tag:Macrophage; Particle shape; Phagocytosis; Poly(epsilon-caprolactone); Polymer micronetwork colloids
Band:567
Seitenanzahl:7
Fördernde Institution:Helmholtz-AssociationHelmholtz Association
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.