• search hit 1 of 5
Back to Result List

Polyelectrolyte-modified microemulsions as new templates for the formation of nanoparticles

  • The paper is focused on the formation and redispersion of monodisperse BaSO4 nanoparticles in polyelectrolyte- modified microemulsions. It is shown that a cationic polyelectrolyte of low molar mass, e.g. poly(dially1dimethylammonium chloride) (PDADMAC), can be incorporated into the individual inverse microemulsion droplets (L2 phase) consisting of heptanol, water, and an amphoteric surfactant with a sulfobetaine head group. These PDADMAC- filled microemulsion droplets can be successfully used as a template phase for the nanoparticle formation. The monodisperse BaSO4 nanoparticles are produced by a simple mixing procedure and can be redispersed after solvent evaporation without a change in particle dimensions. Dynamic and electrophoretical light scattering in combination with sedimentation experiments in the analytical Ultracentrifuge of the redispersed powder show polyelectrolyte-stabilized nanoparticles with diameters of about 6 nm. The polyelectrolyte shows a "size control effect", which can be explained by theThe paper is focused on the formation and redispersion of monodisperse BaSO4 nanoparticles in polyelectrolyte- modified microemulsions. It is shown that a cationic polyelectrolyte of low molar mass, e.g. poly(dially1dimethylammonium chloride) (PDADMAC), can be incorporated into the individual inverse microemulsion droplets (L2 phase) consisting of heptanol, water, and an amphoteric surfactant with a sulfobetaine head group. These PDADMAC- filled microemulsion droplets can be successfully used as a template phase for the nanoparticle formation. The monodisperse BaSO4 nanoparticles are produced by a simple mixing procedure and can be redispersed after solvent evaporation without a change in particle dimensions. Dynamic and electrophoretical light scattering in combination with sedimentation experiments in the analytical Ultracentrifuge of the redispersed powder show polyelectrolyte-stabilized nanoparticles with diameters of about 6 nm. The polyelectrolyte shows a "size control effect", which can be explained by the polyelectrolyte-surfactant interactions in relation to the polyelectrolyte-nanoparticle interactions during the particle growth, solvent evaporation and redispersion process. However, the approach used here opens away to produce different types of polyelectrolyte-stabilized nanoparticles (including rare metals, semiconductors, carbonates or oxides) of very small dimensions. (C) 2004 Elsevier B.V. All rights reservedshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Joachim KoetzORCiDGND, Jennifa Bahnemann, Gordon Lucas, Brigitte TierschORCiD, Sabine KosmellaGND
ISSN:0927-7757
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:Colloids and Surfaces a-Physicochemical and Engineering Aspects. - ISSN 0927-7757. - 250 (2004), 1-3, S. 423 - 430
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physikalische Chemie und Theoretische Chemie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.