• search hit 2 of 5
Back to Result List

On the nanostructure of micrometer-sized cellulose beads

  • The analysis of the porosity of materials is an important and challenging field in analytical chemistry. The gas adsorption and mercury intrusion methods are the most established techniques for quantification of specific surface areas, but unfortunately, dry materials are mandatory for their applicability. All porous materials that contain water and other solvents in their functional state must be dried before analysis. In this process, care has to be taken since the removal of solvent bears the risk of an incalculable alteration of the pore structure, especially for soft materials. In the present paper, we report on the use of small-angle X-ray scattering (SAXS) as an alternative analysis method for the investigation of the micro and mesopores within cellulose beads in their native, i.e., water-swollen state; in this context, they represent a typical soft material. We show that even gentle removal of the bound water reduces the specific surface area dramatically from 161 to 109 m(2) g(-1) in cellulose bead sample type MT50 and fromThe analysis of the porosity of materials is an important and challenging field in analytical chemistry. The gas adsorption and mercury intrusion methods are the most established techniques for quantification of specific surface areas, but unfortunately, dry materials are mandatory for their applicability. All porous materials that contain water and other solvents in their functional state must be dried before analysis. In this process, care has to be taken since the removal of solvent bears the risk of an incalculable alteration of the pore structure, especially for soft materials. In the present paper, we report on the use of small-angle X-ray scattering (SAXS) as an alternative analysis method for the investigation of the micro and mesopores within cellulose beads in their native, i.e., water-swollen state; in this context, they represent a typical soft material. We show that even gentle removal of the bound water reduces the specific surface area dramatically from 161 to 109 m(2) g(-1) in cellulose bead sample type MT50 and from 417 to 220 m(2) g(-1) in MT100. Simulation of the SAXS curves with a bimodal pore size distribution model reveals that the smallest pores with radii up to 10 nm are greatly affected by drying, whereas pores with sizes in the range of 10 to 70 nm are barely affected. The SAXS results were compared with Brunauer-Emmett-Teller results from nitrogen sorption measurements and with mercury intrusion experiments.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Andreas F. Thuenemann, Peter Klobes, Christoph Wieland, Stefano Bruzzano
DOI:https://doi.org/10.1007/s00216-011-5176-z
ISSN:1618-2642
Title of parent work (English):Analytical & bioanalytical chemistry
Publisher:Springer
Place of publishing:Heidelberg
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:Cellulose; Mesopores; Micropores; Porosimetry; Small-angle X-ray scattering
Volume:401
Issue:4
Number of pages:8
First page:1101
Last Page:1108
Funding institution:BAM Federal Institute for Materials Research and Testing
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.