Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 39 von 739
Zurück zur Trefferliste

Der obere Mantel in der Eifel-Region untersucht mit der Receiver Function Methode

The upper mantle in the region of the Eifel, Germany, analyzed with the receiver function method

  • Die Eifel ist eines der jüngsten vulkanischen Gebiete Mitteleuropas. Die letzte Eruption ereignete sich vor ungefähr 11000 Jahren. Bisher ist relativ wenig bekannt über die tieferen Mechanismen, die für den Vulkanismus in der Eifel verantwortlich sind. Erdbebenaktivität deutet ebenso darauf hin, dass die Eifel eines der geodynamisch aktivsten Gebiete Mitteleuropas ist. In dieser Arbeit wird die Receiver Function Methode verwendet, um die Strukturen des oberen Mantels zu untersuchen. 96 teleseismische Beben (mb > 5.2) wurden ausgewertet, welche von permanenten und mobilen breitbandigen und kurzperiodischen Stationen aufgezeichnet wurden. Das temporäre Netzwerk registrierte von November 1997 bis Juni 1998 und überdeckte eine Fläche von ungefähr 400x250 km². Das Zentrum des Netzwerkes befand sich in der Vulkaneifel. Die Auswertung der Receiver Function Analyse ergab klare Konversionen von der Moho und den beiden Manteldiskontinuitäten in 410 km und 660 km Tiefe, sowie Hinweise auf einen Mantel-Plume in der Region der Eifel. Die MohoDie Eifel ist eines der jüngsten vulkanischen Gebiete Mitteleuropas. Die letzte Eruption ereignete sich vor ungefähr 11000 Jahren. Bisher ist relativ wenig bekannt über die tieferen Mechanismen, die für den Vulkanismus in der Eifel verantwortlich sind. Erdbebenaktivität deutet ebenso darauf hin, dass die Eifel eines der geodynamisch aktivsten Gebiete Mitteleuropas ist. In dieser Arbeit wird die Receiver Function Methode verwendet, um die Strukturen des oberen Mantels zu untersuchen. 96 teleseismische Beben (mb > 5.2) wurden ausgewertet, welche von permanenten und mobilen breitbandigen und kurzperiodischen Stationen aufgezeichnet wurden. Das temporäre Netzwerk registrierte von November 1997 bis Juni 1998 und überdeckte eine Fläche von ungefähr 400x250 km². Das Zentrum des Netzwerkes befand sich in der Vulkaneifel. Die Auswertung der Receiver Function Analyse ergab klare Konversionen von der Moho und den beiden Manteldiskontinuitäten in 410 km und 660 km Tiefe, sowie Hinweise auf einen Mantel-Plume in der Region der Eifel. Die Moho wurde bei ungefähr 30 km Tiefe beobachtet und zeigt nur geringe Variationen im Bereich des Netzwerkes. Die beobachteten Variationen der konvertierten Phasen der Moho können mit lateralen Schwankungen in der Kruste zu tun haben, die mit den Receiver Functions nicht aufgelöst werden können. Die Ergebnisse der Receiver Function Methode deuten auf eine Niedriggeschwindigkeitszone zwischen 60 km bis 90 km in der westlichen Eifel hin. In etwa 200 km Tiefe werden im Bereich der Eifel amplitudenstarke positive Phasen von Konversionen beobachtet. Als Ursache hierfür wird eine Hochgeschwindigkeitszone vorgeschlagen, welche durch mögliches aufsteigendes, dehydrierendes Mantel-Material verursacht wird. Die P zu S Konversionen an der 410 km Diskontinuität zeigen einen späteren Einsatz als nach dem IASP91-Modell erwartet wird. Die migrierten Daten weisen eine Absenkung der 410 km Diskontinuität um bis zu 20 km Tiefe auf, was einer Erhöhung der Temperatur von bis zu etwa 140° Celsius entspricht. Die 660 km Diskontinuität weist keine Aufwölbung auf. Dies deutet darauf hin, dass kein Mantelmaterial direkt von unterhalb der 660 km Diskontinuität in der Eifel-Region aufsteigt oder, dass der Ursprung des Eifel-Plumes innerhalb der Übergangszone liegt.zeige mehrzeige weniger
  • The upper mantle in the region of the Eifel, Germany, analyzed with the receiver function method: The Eifel is the youngest volcanic area of Central Europe. The last eruption occurred approximately 11000 years ago. Little is known about the deep origin and the mechanism responsible for the Eifel volcanic activity. Earthquake activity indicates that the Eifel is one of the most geodynamically active areas of Central Europe. In this work the receiver function method is used to investigate the upper mantle structure beneath the Eifel. Data from 96 teleseismic events (mb > 5.2) that were recorded by both permanent stations and a temporary network of 33 broadband and 129 short period stations had been analyzed. The temporary network was operating from November 1997 till June 1998 and covered an area of approximately 400x250 km² centered on the Eifel volcanic fields. The receiver function analysis reveals a clear image of the Moho and the mantle discontinuities at 410 km and 660 km depth. Average Moho depth is approximately 30 km and itThe upper mantle in the region of the Eifel, Germany, analyzed with the receiver function method: The Eifel is the youngest volcanic area of Central Europe. The last eruption occurred approximately 11000 years ago. Little is known about the deep origin and the mechanism responsible for the Eifel volcanic activity. Earthquake activity indicates that the Eifel is one of the most geodynamically active areas of Central Europe. In this work the receiver function method is used to investigate the upper mantle structure beneath the Eifel. Data from 96 teleseismic events (mb > 5.2) that were recorded by both permanent stations and a temporary network of 33 broadband and 129 short period stations had been analyzed. The temporary network was operating from November 1997 till June 1998 and covered an area of approximately 400x250 km² centered on the Eifel volcanic fields. The receiver function analysis reveals a clear image of the Moho and the mantle discontinuities at 410 km and 660 km depth. Average Moho depth is approximately 30 km and it shows little variation over the extent of the network. The observed variations of converted waveforms are possibly caused by lateral variations in crustal structure, which could not resolved by it receiver functions. Inversions of data and migrated it receiver functions from stations of the central Eifel array suggest that a low velocity zone is present at about 60 to 90 km depth in the western Eifel region. There are also indications for a high velocity zone around 200 km depth, perhaps caused by dehydration of the rising plume material. The results suggest that P-to-S conversions from the 410-km discontinuity arrive later than in the IASP91 reference model. The migrated data show a depression of the 410 km discontinuity of about 20 km, which correspond to an increase of temperature of about 140° Celsius. The 660 km discontinuity seems to be unaffected. This indicates that no mantel material rises up from directly below the 660 km discontinuity in the Eifel region or the Eifel-Plume has its origin within the transition zone.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Martin BudwegGND
URN:urn:nbn:de:kobv:517-0000704
Betreuer*in(nen):Rainer Kind, Joachim Ritter, Michael H. Weber
Publikationstyp:Dissertation
Sprache:Deutsch
Erscheinungsjahr:2002
Veröffentlichende Institution:Universität Potsdam
Titel verleihende Institution:Universität Potsdam
Datum der Abschlussprüfung:10.03.2003
Datum der Freischaltung:10.02.2005
Freies Schlagwort / Tag:Eifel; Erdmantel; Hotspot; Receiver Function; Seismologie
Eifel; Hotspot; Mantle; Receiver Function; Seismology
RVK - Regensburger Verbundklassifikation:TF 04999
RVK - Regensburger Verbundklassifikation:TP 05078
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.