• search hit 2 of 3
Back to Result List

Circular Dichroism in Mass Spectrometry: Quantum Chemical Investigations for the Differences between (R)-3-Methylcyclopentanone and Its Cation

  • In mass spectrometry enantiomers can be distinguished by multiphoton ionization employing circular polarized laser pulses. The circular dichroism (CD) is detected from the normalized difference in the ion yield after excitation with light of opposite handedness. While there are cases in which fragment and parent ions exhibit the same sign of the CD in the ion yield, several experiments show that they might also differ in sign and magnitude. Supported by experimental observations it has been proposed that the parent ion, once it has been formed, is further excited by the laser, which may result in a change of the CD in the ion yield of the formed fragments compared to the parent ion. To gain a deeper insight in possible excitation pathways we calculated and compared the electronic CD absorption spectra of neutral and cationic (R)-3-methylcyclopentanone, applying density functional theory. In addition, electron wavepacket dynamics were used to compare the CD of one- and two-photon transitions. Our results support the proposed subsequentIn mass spectrometry enantiomers can be distinguished by multiphoton ionization employing circular polarized laser pulses. The circular dichroism (CD) is detected from the normalized difference in the ion yield after excitation with light of opposite handedness. While there are cases in which fragment and parent ions exhibit the same sign of the CD in the ion yield, several experiments show that they might also differ in sign and magnitude. Supported by experimental observations it has been proposed that the parent ion, once it has been formed, is further excited by the laser, which may result in a change of the CD in the ion yield of the formed fragments compared to the parent ion. To gain a deeper insight in possible excitation pathways we calculated and compared the electronic CD absorption spectra of neutral and cationic (R)-3-methylcyclopentanone, applying density functional theory. In addition, electron wavepacket dynamics were used to compare the CD of one- and two-photon transitions. Our results support the proposed subsequent excitation of the parent ion as a possible origin of the difference of the CD in the ion yield between parent ion and fragments.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Dominik Kröner, Tina Gaebel
DOI:https://doi.org/10.1021/acs.jpca.5b05247
ISSN:1089-5639
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/26214257
Title of parent work (English):The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:119
Issue:34
Number of pages:11
First page:9167
Last Page:9177
Funding institution:German Research Foundation [Kr 2942/2]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.