• Treffer 46 von 73
Zurück zur Trefferliste

Towards quantification of toxicity of lithium ion battery electrolytes - development and validation of a liquid-liquid extraction GC-MS method for the determination of organic carbonates in cell culture materials

  • A novel method based on liquid-liquid extraction with subsequent gas chromatography separation and mass spectrometric detection (GC-MS) for the quantification of organic carbonates in cell culture materials is presented. Method parameters including the choice of extraction solvent, of extraction method and of extraction time were optimised and the method was validated. The setup allowed for determination within a linear range of more than two orders of magnitude. The limits of detection (LODs) were between 0.0002 and 0.002 mmol/L and the repeatability precisions were in the range of 1.5-12.9%. It could be shown that no matrix effects were present and recovery rates between 98 and 104% were achieved. The methodology was applied to cell culture models incubated with commercial lithium ion battery (LIB) electrolytes to gain more insight into the potential toxic effects of these compounds. The stability of the organic carbonates in cell culture medium after incubation was studied. In a porcine model of the blood-cerebrospinal fluid (CSF)A novel method based on liquid-liquid extraction with subsequent gas chromatography separation and mass spectrometric detection (GC-MS) for the quantification of organic carbonates in cell culture materials is presented. Method parameters including the choice of extraction solvent, of extraction method and of extraction time were optimised and the method was validated. The setup allowed for determination within a linear range of more than two orders of magnitude. The limits of detection (LODs) were between 0.0002 and 0.002 mmol/L and the repeatability precisions were in the range of 1.5-12.9%. It could be shown that no matrix effects were present and recovery rates between 98 and 104% were achieved. The methodology was applied to cell culture models incubated with commercial lithium ion battery (LIB) electrolytes to gain more insight into the potential toxic effects of these compounds. The stability of the organic carbonates in cell culture medium after incubation was studied. In a porcine model of the blood-cerebrospinal fluid (CSF) barrier, it could be shown that a transfer of organic carbonates into the brain facing compartment took place.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Jenny Strehlau, Till Weber, Constantin Luerenbaum, Julia BornhorstORCiDGND, Hans-Joachim GallaORCiD, Tanja SchwerdtleORCiDGND, Martin Winter, Sascha NowakORCiD
DOI:https://doi.org/10.1007/s00216-017-0549-6
ISSN:1618-2642
ISSN:1618-2650
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/28776071
Titel des übergeordneten Werks (Englisch):Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica
Verlag:Springer
Verlagsort:Heidelberg
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
Erscheinungsjahr:2017
Datum der Freischaltung:20.04.2020
Freies Schlagwort / Tag:Cell culture materials; GC-MS; Liquid-liquid extraction; Lithiumion battery (LIB); Organic carbonates
Band:409
Seitenanzahl:9
Erste Seite:6123
Letzte Seite:6131
Fördernde Institution:German Federal Ministry of Education and Research (BMBF) within the project "SafeBatt" [03X4631N, 03X4631Q]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.