The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 26 of 160
Back to Result List

Photoinduced energy and electron transfer in micellar multilayer films

  • Micellar multilayer films were prepared from an amphiphilic comb-like polycation ("polysoap") and the polyanion poly(styrene sulfonate) (PSS) using alternate polyelectrolyte layer-by-layer (LbL) self-assembly. Linear growth of the film thickness was evidenced by UV-vis spectroscopy and spectroscopic ellipsometry. Imaging by atomic force microscopy (AFM) indicated that the micellar conformation adopted by the polycation in solutions was preserved in the films. Thus, hydrophobic photoactive molecules, which were solubilized by the hydrophobic nanodomains of the micellar polymer prior to deposition, could be transferred into the films. Photoinduced energy transfer was observed in the nanostructured multilayers between naphthalene (donor) and perylene (acceptor) molecules embedded inside the polymer micelles. The efficiency of the energy transfer process can be controlled to some extent by introducing spacer layers between the layers containing the donor or acceptor, revealing partial stratification of the micellar LbL films. Also,Micellar multilayer films were prepared from an amphiphilic comb-like polycation ("polysoap") and the polyanion poly(styrene sulfonate) (PSS) using alternate polyelectrolyte layer-by-layer (LbL) self-assembly. Linear growth of the film thickness was evidenced by UV-vis spectroscopy and spectroscopic ellipsometry. Imaging by atomic force microscopy (AFM) indicated that the micellar conformation adopted by the polycation in solutions was preserved in the films. Thus, hydrophobic photoactive molecules, which were solubilized by the hydrophobic nanodomains of the micellar polymer prior to deposition, could be transferred into the films. Photoinduced energy transfer was observed in the nanostructured multilayers between naphthalene (donor) and perylene (acceptor) molecules embedded inside the polymer micelles. The efficiency of the energy transfer process can be controlled to some extent by introducing spacer layers between the layers containing the donor or acceptor, revealing partial stratification of the micellar LbL films. Also, photoinduced electron transfer was evidenced between perylene (donor) and butyl viologen (acceptor) molecules embedded inside the multilayers by steady-state fluorescence spectroscopy. The obtained photoactive nanostructures are promising candidates for solar-to-chemical energy conversion systems.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Maciej Kopec, Wiktor Niemiec, André LaschewskyORCiDGND, Maria Nowakowska, Szczepan Zapotoczny
DOI:https://doi.org/10.1021/jp410808z
ISSN:1932-7447
Title of parent work (English):The journal of physical chemistry : C, Nanomaterials and interfaces
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:118
Issue:4
Number of pages:7
First page:2215
Last Page:2221
Funding institution:Polish Ministry of Science and Higher Education [IdP2011 000561]; ESF; Malopolskie Center of Entrepreneurship; EU
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.