• Treffer 7 von 12
Zurück zur Trefferliste

Upconversion Luminescence Properties of NaYF4:Yb:Er Nanoparticles Codoped with Gd3+

  • The temperature-dependent upconversion luminescence of NaYF4:Yb:Er nanoparticles (UCNP) containing different contents of Gd3+ as additional dopant was characterized. The UCNP were synthesized in a hydrothermal synthesis and stabilized with citrate in order to transfer them to the water phase. Basic characterization was carried out using TEM and DLS to determine the average size of the UCNP. The XRD technique was used to investigate the crystal lattice of the UCNP. It was found that due to the presence of Gd3+, an alteration of the lattice phase from a to beta was induced which was also reflected in the observed upconversion luminescence properties of the UCNP. A detailed analysis of the upconversion luminescence spectraespecially at ultralow temperaturesrevealed the different effects of phonon coupling between the host lattice and the sensitizer (Yb3+) as well as the activator (Er3+). Furthermore, the upconversion luminescence intensity reached a maximum between 15 and 250 K depending on Gd3+ content. In comparison to the very complexThe temperature-dependent upconversion luminescence of NaYF4:Yb:Er nanoparticles (UCNP) containing different contents of Gd3+ as additional dopant was characterized. The UCNP were synthesized in a hydrothermal synthesis and stabilized with citrate in order to transfer them to the water phase. Basic characterization was carried out using TEM and DLS to determine the average size of the UCNP. The XRD technique was used to investigate the crystal lattice of the UCNP. It was found that due to the presence of Gd3+, an alteration of the lattice phase from a to beta was induced which was also reflected in the observed upconversion luminescence properties of the UCNP. A detailed analysis of the upconversion luminescence spectraespecially at ultralow temperaturesrevealed the different effects of phonon coupling between the host lattice and the sensitizer (Yb3+) as well as the activator (Er3+). Furthermore, the upconversion luminescence intensity reached a maximum between 15 and 250 K depending on Gd3+ content. In comparison to the very complex temperature behavior of the upconversion luminescence in the temperature range <273 K, the luminescence intensity ratio of H-2(11/2)-> I-4(15/2) to S-4(3/2)-> I-4(15/2) (R = G1/G2) in a higher temperature range can be described by an Arrhenius-type equation.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Dennis Tobias KlierGND, Michael Uwe KumkeORCiDGND
DOI:https://doi.org/10.1021/jp5103548
ISSN:1932-7447
Titel des übergeordneten Werks (Englisch):The journal of physical chemistry : C, Nanomaterials and interfaces
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2015
Erscheinungsjahr:2015
Datum der Freischaltung:27.03.2017
Band:119
Ausgabe:6
Seitenanzahl:11
Erste Seite:3363
Letzte Seite:3373
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.