• search hit 19 of 48
Back to Result List

Heating of trapped atoms near thermal surfaces

  • We study the electromagnetic coupling and concomitant heating of a particle in a miniaturized trap close to a solid surface. Two dominant heating mechanisms are identified: proximity fields generated by thermally exicted currents in the absorbing solid and timedependent image potentials due to elastic surfaces distortions (Rayleigh phonons. Estimates for the lifetime of the trap ground state are given. Ions are paricularly sinsitive to electric proximity fields: for a silver substrate, we find a lifetime below one second at distrances closer than some ten 10^-6m to the surfaces. Neutral atoms may approach the surface more closely: if they have a magnetic moment, a minimum distance of one 10^-6m is estimatied in tight traps, the heat being transferred via magnetic proximity fields. For spinless atoms, heat is transferred by inelastic scattering of virtual photons off sorface phonons. The corresponding lifetime, however, is estimated to be extremely long compared to the timescale of typical experiments.

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Carsten HenkelORCiDGND, Martin WilkensORCiD
Publication type:Article
Language:English
Year of first publication:1999
Publication year:1999
Release date:2017/03/24
Source:Europhysics Letters. - 47 (1999), 4, S. 414 - 420
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.