• search hit 2 of 2
Back to Result List

Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays

  • Microstructured hydrogel allows for a new template-guided method to obtain conductive nanowire arrays on a large scale. To generate the template, an imprinting process is used in order to synthesize the hydrogel directly into the grooves of wrinkled polydimethylsiloxane (PDMS). The resulting poly(N-vinylimidazole)-based hydrogel is defined by the PDMS stamp in pattern and size. Subsequently, tetrachloroaurate(III) ions from aqueous solution are coordinated within the humps of the N-vinylimidazole-containing polymer template and reduced by air plasma. After reduction and development of the gold, to achieve conductive wires, the extension perpendicular to the long axis (width) of the gold strings is considerably reduced compared to the dimension of the parental hydrogel wrinkles (from approximate to 1 mu m down to 200-300 nm). At the same time, the wire-to-wire distance and the overall length of the wires is preserved. The PDMS templates and hydrogel structures are analyzed with scanning force microscopy (SFM) and the gold structuresMicrostructured hydrogel allows for a new template-guided method to obtain conductive nanowire arrays on a large scale. To generate the template, an imprinting process is used in order to synthesize the hydrogel directly into the grooves of wrinkled polydimethylsiloxane (PDMS). The resulting poly(N-vinylimidazole)-based hydrogel is defined by the PDMS stamp in pattern and size. Subsequently, tetrachloroaurate(III) ions from aqueous solution are coordinated within the humps of the N-vinylimidazole-containing polymer template and reduced by air plasma. After reduction and development of the gold, to achieve conductive wires, the extension perpendicular to the long axis (width) of the gold strings is considerably reduced compared to the dimension of the parental hydrogel wrinkles (from approximate to 1 mu m down to 200-300 nm). At the same time, the wire-to-wire distance and the overall length of the wires is preserved. The PDMS templates and hydrogel structures are analyzed with scanning force microscopy (SFM) and the gold structures via scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The conductivity measurements of the gold nanowires are performed in situ in the SEM, showing highly conductive gold leads. Hence, this method can be regarded as a facile nonlithographic top-down approach from micrometer-sized structures to nanometer-sized features.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Patrick Wuennemann, Michael Noyong, Klaus Kreuels, Roland Bruex, Pavlo Gordiichuk, Patrick van Rijn, Felix A. Plamper, Ulrich Simon, Alexander BökerORCiDGND
DOI:https://doi.org/10.1002/marc.201600287
ISSN:1022-1336
ISSN:1521-3927
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/27386787
Title of parent work (English):Macromolecular rapid communications
Publisher:Wiley-VCH
Place of publishing:Weinheim
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:1D structures; Au nanoarrays; lithography; microgel; nanoimprint; thin films
Volume:37
Number of pages:7
First page:1446
Last Page:1452
Funding institution:Deutsche Forschungsgemeinschaft [SFB 985]; EU; federal state of North Rhine-Westphalia Grant [EFRE 30 00 883 02]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.