• search hit 17 of 101
Back to Result List

Spot variation fluorescence correlation spectroscopy by data post-processing

  • Spot variation fluorescence correlation spectroscopy (SV-FCS) is a variant of the FCS techniques which may give useful information about the structural organisation of the medium in which the diffusion takes place. We show that the same results can be obtained by post-processing the photon count data from ordinary FCS measurements. By using this method, one obtains the fluorescence autocorrelation functions for sizes of confocal volume, which are effectively smaller than that of the initial FCS measurement. The photon counts of the initial experiment are first transformed into smooth intensity trace using kernel smoothing method or to a piecewise-continuous intensity trace using binning and then a non-linear transformation is applied to this trace. The result of this transformation mimics the photon count rate in an experiment performed with a smaller confocal volume. The applicability of the method is established in extensive numerical simulations and directly supported in in-vitro experiments. The procedure is then applied to theSpot variation fluorescence correlation spectroscopy (SV-FCS) is a variant of the FCS techniques which may give useful information about the structural organisation of the medium in which the diffusion takes place. We show that the same results can be obtained by post-processing the photon count data from ordinary FCS measurements. By using this method, one obtains the fluorescence autocorrelation functions for sizes of confocal volume, which are effectively smaller than that of the initial FCS measurement. The photon counts of the initial experiment are first transformed into smooth intensity trace using kernel smoothing method or to a piecewise-continuous intensity trace using binning and then a non-linear transformation is applied to this trace. The result of this transformation mimics the photon count rate in an experiment performed with a smaller confocal volume. The applicability of the method is established in extensive numerical simulations and directly supported in in-vitro experiments. The procedure is then applied to the diffusion of AlexaFluor647-labeled streptavidin in living cells.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:S. M. J. Khadem, Carsten HilleORCiDGND, Hans-Gerd LöhmannsröbenORCiDGND, Igor M. SokolovORCiDGND
DOI:https://doi.org/10.1038/s41598-017-05672-8
ISSN:2045-2322
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/28717215
Title of parent work (English):Scientific reports
Publisher:Nature Publ. Group
Place of publishing:London
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Volume:7
Number of pages:14
First page:1
Last Page:9
Funding institution:German Research Foundation (DFG) within the School of Analytical Sciences Adlershof (SALSA); Federal Ministry of Education and Research BMBF [03IPT517Y]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.