• search hit 4 of 4
Back to Result List

Lutein Activates the Transcription Factor Nrf2 in Human Retinal Pigment Epithelial Cells

  • The degeneration of the retinal pigment epithelium caused by oxidative damage is a stage of development in age related macular degeneration (AMD). The carotenoid lutein is a major macular pigment that may reduce the incidence and progression of AMD, but the underlying mechanism is currently not fully understood. Carotenoids are known to be direct antioxidants. However, carotenoids can also activate cellular pathways resulting in indirect antioxidant effects. Here, we investigate the influence of lutein on the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes in human retinal pigment epithelial cells (ARPE-19 cells) using lutein-loaded Tween40 micelles. The micelles were identified as a suitable delivery system since they were nontoxic in APRE-19 cells up to 0.04% Tween40 and led to a cellular lutein accumulation of 62 mu M +/- 14 mu M after 24 h. Lutein significantly enhanced Nrf2 translocation to the nucleus 1.5 +/- 0.4-fold compared to that of unloaded micelles after 4 h. Furthermore, lutein treatment forThe degeneration of the retinal pigment epithelium caused by oxidative damage is a stage of development in age related macular degeneration (AMD). The carotenoid lutein is a major macular pigment that may reduce the incidence and progression of AMD, but the underlying mechanism is currently not fully understood. Carotenoids are known to be direct antioxidants. However, carotenoids can also activate cellular pathways resulting in indirect antioxidant effects. Here, we investigate the influence of lutein on the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes in human retinal pigment epithelial cells (ARPE-19 cells) using lutein-loaded Tween40 micelles. The micelles were identified as a suitable delivery system since they were nontoxic in APRE-19 cells up to 0.04% Tween40 and led to a cellular lutein accumulation of 62 mu M +/- 14 mu M after 24 h. Lutein significantly enhanced Nrf2 translocation to the nucleus 1.5 +/- 0.4-fold compared to that of unloaded micelles after 4 h. Furthermore, lutein treatment for 24 h significantly increased the transcripts of NAD(P)H:quinone oxidoreductase 1 (NQO1) by 1.7 +/- 0.1-fold, glutamate-cysteine ligase regulatory subunit (GCLm) by 1.4 +/- 0.1-fold, and heme oxygenase-1 (HO-1) by 1.8 +/- 0.3-fold. Moreover, we observed a significant enhancement of NQO1 activity by 1.2 +/- 0.1-fold. Collectively, this study indicates that lutein not only serves as a direct antioxidant but also activates Nrf 2 in ARPE-19 cells.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Katja Frede, Franziska EbertORCiDGND, Anna Patricia KippORCiDGND, Tanja SchwerdtleORCiDGND, Susanne BaldermannORCiDGND
DOI:https://doi.org/10.1021/acs.jafc.7b01929
ISSN:0021-8561
ISSN:1520-5118
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/28665123
Title of parent work (English):Journal of agricultural and food chemistry : a publication of the American Chemical Society
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:AMD; ARPE-19 cells; Nif2; Tween40 micelles; lutein
Volume:65
Number of pages:9
First page:5944
Last Page:5952
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.