• search hit 11 of 21
Back to Result List

Neotectonic deformation over space and time as observed by space-based geodesy

Über die Vermessung neotektonischer Deformation in Raum und mit Hilfe von satellitengestützter Geodäsie

  • Alfred Wegeners ideas on continental drift were doubted for several decades until the discovery of polarization changes at the Atlantic seafloor and the seismic catalogs imaging oceanic subduction underneath the continental crust (Wadati-Benioff Zone). It took another 20 years until plate motion could be directly observed and quantified by using space geodesy. Since then, it is unthinkable to do neotectonic research without the use of satellite-based methods. Thanks to a tremendeous increase of instrumental observations in space and time over the last decades we significantly increased our knowledge on the complexity of the seismic cycle, that is, the interplay of tectonic stress build up and release. Our classical assumption, earthquakes were the only significant phenomena of strain release previously accumulated in a linear fashion, is outdated. We now know that this concept is actually decorated with a wide range of slow and fast processes such as triggered slip, afterslip, post-seismic and visco-elastic relaxation of the lowerAlfred Wegeners ideas on continental drift were doubted for several decades until the discovery of polarization changes at the Atlantic seafloor and the seismic catalogs imaging oceanic subduction underneath the continental crust (Wadati-Benioff Zone). It took another 20 years until plate motion could be directly observed and quantified by using space geodesy. Since then, it is unthinkable to do neotectonic research without the use of satellite-based methods. Thanks to a tremendeous increase of instrumental observations in space and time over the last decades we significantly increased our knowledge on the complexity of the seismic cycle, that is, the interplay of tectonic stress build up and release. Our classical assumption, earthquakes were the only significant phenomena of strain release previously accumulated in a linear fashion, is outdated. We now know that this concept is actually decorated with a wide range of slow and fast processes such as triggered slip, afterslip, post-seismic and visco-elastic relaxation of the lower crust, dynamic pore-pressure changes in the elastic crust, aseismic creep, slow slip events and seismic swarms. On the basis of eleven peer-reviewed papers studies I here present the diversity of crustal deformation processes. Based on time-series analyses of radar imagery and satellited-based positioning data I quantify tectonic surface deformation and use numerical and analytical models and independent geologic and seismologic data to better understand the underlying crustal processes. The main part of my work focuses on the deformation observed in the Pamir, the Hindu Kush and the Tian Shan that together build the highly active continental collision zone between Northwest-India and Eurasia. Centered around the Sarez earthquake that ruptured the center of the Pamir in 2015 I present diverse examples of crustal deformation phenomena. Driver of the deformation is the Indian indenter, bulldozing into the Pamir, compressing the orogen that then collapses westward into the Tajik depression. A second natural observatory of mine to study tectonic deformation is the oceanic subduction zone in Chile that repeatedly hosts large earthquakes of magnitude 8 and more. These are best to study post-seismic relaxation processes and coupling of large earthquake. My findings nicely illustrate how complex fashion and how much the different deformation phenomena are coupled in space and time. My publications contribute to the awareness that the classical concept of the seismic cycle needs to be revised, which, in turn, has a large influence in the classical, probabilistic seismic hazard assessment that primarily relies on statistically solid recurrence times.show moreshow less
  • Alfred Wegeners Thesen des Kontinentaldrifts fanden erst in den 1960er und 1970er Jahren Akzeptanz, als die krustalen Polarisationswechsel auf dem atlantischen Meeresboden entdeckt wurden und Erdbebenkataloge das Abtauchen von ozeanischer Kruste unter kontinentale Kruste abbildeten (Wadati-Benioff-Zone). Es dauerte jedoch weitere 20 Jahre, bis die Geodäsie erstmals Plattenbewegung sicht- und quantifizierbar machte. Seit dann sind satellitengestützte Messmethoden aus der neotektonischen Forschung nicht mehr wegzudenken. Dank einer stetig (zeitlich und räumlich) wachsenden Anzahl instrumenteller Beobachtungsdaten wird unser Verständnis des Erdbebenzyklus—des Wechselspiels zwischen tektonischem Spannungsauf- und -abbau—immer komplexer. Das klassische Konzept, nur Erdbeben setzten die zuvor linear aufgebaute Spannungsenergie instantan frei, wird heutzutage durch eine Vielzahl von zusätzlichen schnelleren und langsameren Prozessen ergänzt. Beispiele dafür sind getriggerte Versätze (triggered slip), Nachbeben (afterslip), postseismischeAlfred Wegeners Thesen des Kontinentaldrifts fanden erst in den 1960er und 1970er Jahren Akzeptanz, als die krustalen Polarisationswechsel auf dem atlantischen Meeresboden entdeckt wurden und Erdbebenkataloge das Abtauchen von ozeanischer Kruste unter kontinentale Kruste abbildeten (Wadati-Benioff-Zone). Es dauerte jedoch weitere 20 Jahre, bis die Geodäsie erstmals Plattenbewegung sicht- und quantifizierbar machte. Seit dann sind satellitengestützte Messmethoden aus der neotektonischen Forschung nicht mehr wegzudenken. Dank einer stetig (zeitlich und räumlich) wachsenden Anzahl instrumenteller Beobachtungsdaten wird unser Verständnis des Erdbebenzyklus—des Wechselspiels zwischen tektonischem Spannungsauf- und -abbau—immer komplexer. Das klassische Konzept, nur Erdbeben setzten die zuvor linear aufgebaute Spannungsenergie instantan frei, wird heutzutage durch eine Vielzahl von zusätzlichen schnelleren und langsameren Prozessen ergänzt. Beispiele dafür sind getriggerte Versätze (triggered slip), Nachbeben (afterslip), postseismische und visko-elastische Relaxation der tieferen Kruste, dynamische, elastische Veränderungen des Gesteins-Porendrucks, aseismisches Kriechen sowie Spannungsabbau durch kleine Erdbebenschwärme. Anhand von elf begutachteten und bereits veröffentlichten Arbeiten präsentiere ich in meiner Habilitationsschrift die Diversität krustaler Deformationsprozesse. Ich analysiere Zeitreihen von Radar-Satellitenaufnahmen und satellitengestützten Positionierungssystemen um die tektonische Oberflächenbewegung zu quantifizieren. Der Vergleich von kinematischen Beobachtungen mit geologischen und seismischen Indizien sowie die Simulation ebenjener durch rechnergestützte Modelle ermöglichen mir, die verursachenden krustalen Prozesse besser verstehen. Der Hauptteil meiner Arbeiten beschreibt rezente, krustale Bewegungen im Pamir, Hindu Kush und Tien Shan, welche zusammen das westliche Ende der kontinentalen Kollisionszone zwischen dem indischen und eurasischen Kontinent bilden. Rund um ein starkes Erdbeben, welches 2015 den Zentralpamir erschüttert hat, zeige ich vielseitige Beispiele von hochaktiver krustaler Deformation. Verursacht werden diese Bewegungen durch den nordwestindischen Kontinentalsporn, welcher (fast) ungebremst in den Pamir hineinrammt, ihn auftürmt, zusammenquetscht, und ihn gravitationsbedingt gegen Westen ins tadschikische Becken kollabieren lässt. Der zweite thematische Schwerpunkt liegt auf Prozessen, welche durch Megathrust-Erdbeben, also Beben mit einer Magnitude>8, hervorgerufen werden. Diese Anwendungen fokussieren sich auf die ozeanischen Subduktionszone von Chile und zeigen die Wichtigkeit vertikaler Hebungsdaten um, beispielsweise, den Einfluss tektonischer Prozesse auf den Gesteins-Porendruck zu verstehen. Zusammenfassend veranschaulichen und bestätigen meine Arbeiten, wie stark und komplex die oben beschriebenen Prozesse räumlich und zeitlich korrelieren, und dass das klassische Konzept des Erdbebenzyklus überholt ist. Letztere Einsicht hat grossen Einfluss auf probabilistische seismische Gefährdungsanalysen, welche grundsätzlich statistische Vorhersagbarkeit annehmen.show moreshow less

Download full text files

  • SHA-512:176aa8e17f1f9aed96430e17b593844285b95b69f50b6215042e6ead0662a43113cbcd9c8722189261e1683e31323e23f93eccc89dcb459c7f969fe9c84efbc2

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sabrina MetzgerORCiDGND
URN:urn:nbn:de:kobv:517-opus4-599225
DOI:https://doi.org/10.25932/publishup-59922
Reviewer(s):Freysteinn SigmundssonORCiDGND, Roland BürgmannORCiDGND, Peter van der BeekGND
Supervisor(s):Bodo Bookhagen
Publication type:Habilitation Thesis
Language:English
Publication year:2023
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2023/05/12
Release date:2023/08/10
Tag:Erdbeben; Geodäsie; InSAR; Radar-Satelliteninterferometrie; Seismologie; Tektonik
InSAR; earthquakes; geodesy; radar satellite interferometry; seismology; tectonics
Number of pages:V, 217
RVK - Regensburg classification:UT 1800, UT 2250, TP 6860, TP 6570
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.