• Treffer 1 von 1
Zurück zur Trefferliste

CTGF/CCN2 exerts profibrotic action in myoblasts via the up-regulation of sphingosine kinase-1/S1P(3) signaling axis: Implications in the action mechanism of TGF beta

  • The matricellular protein connective tissue growth factor (CTGF/CCN2) is recognized as key player in the onset of fibrosis in various tissues, including skeletal muscle. In many circumstances, CTGF has been shown to be induced by transforming growth factor beta (TGF beta) and accounting, at least in part, for its biological action. In this study it was verified that in cultured myoblasts CTGF/CCN2 causes their transdifferentiation into myofibroblasts by up-regulating the expression of fibrosis marker proteins alpha-smooth muscle actin and transgelin. Interestingly, it was also found that the profibrotic effect exerted by CTGF/CCN2 was mediated by the sphingosine kinase (SK)-1/S1P(3) signaling axis specifically induced by the treatment with the profibrotic cue. Following CTGF/CCN2-induced up-regulation, S1P(3) became the SIP receptor subtype expressed at the highest degree, at least at mRNA level, and was thus capable of readdressing the sphingosine 1-phosphate signaling towards fibrosis rather than myogenic differentiation. AnotherThe matricellular protein connective tissue growth factor (CTGF/CCN2) is recognized as key player in the onset of fibrosis in various tissues, including skeletal muscle. In many circumstances, CTGF has been shown to be induced by transforming growth factor beta (TGF beta) and accounting, at least in part, for its biological action. In this study it was verified that in cultured myoblasts CTGF/CCN2 causes their transdifferentiation into myofibroblasts by up-regulating the expression of fibrosis marker proteins alpha-smooth muscle actin and transgelin. Interestingly, it was also found that the profibrotic effect exerted by CTGF/CCN2 was mediated by the sphingosine kinase (SK)-1/S1P(3) signaling axis specifically induced by the treatment with the profibrotic cue. Following CTGF/CCN2-induced up-regulation, S1P(3) became the SIP receptor subtype expressed at the highest degree, at least at mRNA level, and was thus capable of readdressing the sphingosine 1-phosphate signaling towards fibrosis rather than myogenic differentiation. Another interesting finding is that CTGF/CCN2 silencing prevented the TGF beta-dependent up-regulation of SKI/S1P(3) signaling axis and strongly reduced the profibrotic effect exerted by TGF beta, pointing at a crucial role of endogenous CTGF/CCN2 generated following TGF beta challenge in the transmission of at least part of its profibrotic effect These results provide new insights into the molecular mechanism by which CTGF/CCN2 drives its biological action and strengthen the concept that SK1/S1P(3) axis plays a critical role in the onset of fibrotic cell phenotype. (C) 2014 Elsevier B.V. All rights reserved.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Gennaro Bruno, Francesca Cencetti, Irene Pertici, Lukasz JaptokGND, Caterina Bernacchioni, Chiara Donati, Paola Bruni
DOI:https://doi.org/10.1016/j.bbalip.2014.11.011
ISSN:1388-1981
ISSN:0006-3002
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/25457224
Titel des übergeordneten Werks (Englisch):Biochimica et biophysica acta : Molecular and cell biology of lipids
Verlag:Elsevier
Verlagsort:Amsterdam
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2015
Erscheinungsjahr:2015
Datum der Freischaltung:27.03.2017
Freies Schlagwort / Tag:Connective tissue growth factor; Myoblasts; S1P(3) receptor; Sphingosine kinase; Transforming growth factor beta
Band:1851
Ausgabe:2
Seitenanzahl:9
Erste Seite:194
Letzte Seite:202
Fördernde Institution:University of Florence; Fondazione Cassa di Risparmio di Lucca [BRUNICRL12]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.