• search hit 17 of 19
Back to Result List

Fiber optic plasmonic sensors

  • A simple, convenient, and inexpensive method to fabricate optical fiber based biosensors which utilize periodic hole arrays in gold films for signal transduction is reported. The process of hole array formation mainly relies on self-assembly of hydrogel microgels in combination with chemical gold film deposition and subsequent transfer of the perforated film onto an optical fiber tip. In the fabrication process solely chemical wet lab techniques are used, avoiding cost-intensive instrumentation or clean room facilities. The presented method for preparing fiber optic plasmonic sensors provides high throughput and is perfectly suited for commercialization using batch processing. The transfer of the perforated gold film onto an optical fiber tip does not affect the sensitivity of the biosensor ((420 +/- 83) nm/refractive index unit (RIU)), which is comparable to sensitivities of sensor platforms based on periodic hole arrays in gold films prepared by significantly more complex methods. Furthermore, real-time and in-line immunoassayA simple, convenient, and inexpensive method to fabricate optical fiber based biosensors which utilize periodic hole arrays in gold films for signal transduction is reported. The process of hole array formation mainly relies on self-assembly of hydrogel microgels in combination with chemical gold film deposition and subsequent transfer of the perforated film onto an optical fiber tip. In the fabrication process solely chemical wet lab techniques are used, avoiding cost-intensive instrumentation or clean room facilities. The presented method for preparing fiber optic plasmonic sensors provides high throughput and is perfectly suited for commercialization using batch processing. The transfer of the perforated gold film onto an optical fiber tip does not affect the sensitivity of the biosensor ((420 +/- 83) nm/refractive index unit (RIU)), which is comparable to sensitivities of sensor platforms based on periodic hole arrays in gold films prepared by significantly more complex methods. Furthermore, real-time and in-line immunoassay studies with a specially designed 3D printed flow cell are presented exploiting the presented optical fiber based biosensors.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Nabarun Polley, Supratim BasakORCiD, Roland HassORCiDGND, Claudia PacholskiORCiDGND
DOI:https://doi.org/10.1016/j.bios.2019.03.020
ISSN:0956-5663
ISSN:1873-4235
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/30901726
Title of parent work (English):Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics
Subtitle (English):Providing sensitive biosensor platforms with minimal lab equipment
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Date of first publication:2019/05/01
Publication year:2019
Release date:2021/03/01
Tag:3D printed flow-cell; Biosensor; Bottom-up fabrication; Optical fiber; Surface plasmon resonance
Volume:132
Number of pages:7
First page:368
Last Page:374
Funding institution:German Federal Ministry of Education and Research (BMBF)Federal Ministry of Education & Research (BMBF) [03Z22AN12]; German Research Foundation (DFG)German Research Foundation (DFG) [286735196]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.