• search hit 2 of 5
Back to Result List

The evolution of faint AGN between z similar or equal to 1 and z similar or equal to 5 from the COMBO-17 survey

  • We present a determination of the optical/UV AGN luminosity function and its evolution, based on a large sample of faint (R < 24) QSOs identified in the COMBO-17 survey. Using multi-band photometry in 17 filters within 350 nm <~ lambdaobs <~ 930 nm, we could simultaneously determine photometric redshifts with an accuracy of sigmaz <0.03 and obtain spectral energy distributions. The redshift range covered by the sample is 1.2 < z < 4.8, which implies that even at z =~ 3, the sample reaches below luminosities corresponding to MB = -23, conventionally employed to distinguish between Seyfert galaxies and quasars. We clearly detect a broad plateau-like maximum of quasar activity around z =~ 2 and map out the smooth turnover between z =~ 1 and z =~ 4. The shape of the LF is characterised by some mild curvature, but no sharp ``break'' is present within the range of luminosities covered. Using only the COMBO-17 data, the evolving LF can be adequately described by either a pure density evolution (PDE) or a pure luminosity evolution (PLE)We present a determination of the optical/UV AGN luminosity function and its evolution, based on a large sample of faint (R < 24) QSOs identified in the COMBO-17 survey. Using multi-band photometry in 17 filters within 350 nm <~ lambdaobs <~ 930 nm, we could simultaneously determine photometric redshifts with an accuracy of sigmaz <0.03 and obtain spectral energy distributions. The redshift range covered by the sample is 1.2 < z < 4.8, which implies that even at z =~ 3, the sample reaches below luminosities corresponding to MB = -23, conventionally employed to distinguish between Seyfert galaxies and quasars. We clearly detect a broad plateau-like maximum of quasar activity around z =~ 2 and map out the smooth turnover between z =~ 1 and z =~ 4. The shape of the LF is characterised by some mild curvature, but no sharp ``break'' is present within the range of luminosities covered. Using only the COMBO-17 data, the evolving LF can be adequately described by either a pure density evolution (PDE) or a pure luminosity evolution (PLE) model. However, the absence of a strong L*-like feature in the shape of the LF inhibits a robust distinction between these modes. We present a robust estimate for the integrated UV luminosity generation by AGN as a function of redshift. We find that the LF continues to rise even at the lowest luminosities probed by our survey, but that the slope is sufficiently shallow that the contribution of low-luminosity AGN to the UV luminosity density is negligible. Although our sample reaches much fainter flux levels than previous data sets, our results on space densities and LF slopes are completely consistent with extrapolations from recent major surveys such as SDSS and 2QZ.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:C. Wolf, Lutz WisotzkiORCiDGND, Andrea Borch, S. Dye, M. Kleinheinrich, Klaus Meisenheimer
Publication type:Article
Language:English
Year of first publication:2003
Publication year:2003
Release date:2017/03/24
Source:Astronomy and Astrophysics. - 408 (2003), 2, S. 499 - 514
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.