• search hit 5 of 7
Back to Result List

Reprogrammable and tunable actuation in multiblock copolymer blends

Reprogrammierbare und abstimmbare Aktuation in Blenden von Multiblock Copolymeren

  • Soft actuators have drawn significant attention due to their relevance for applications, such as artificial muscles in devices developed for medicine and robotics. Tuning their performance and expanding their functionality are frequently done by means of chemical modification. The introduction of structural elements rendering non-synthetic modification of the performance possible, as well as control over physical appearance and facilitating their recycling is a subject of a great interest in the field of smart materials. The primary aim of this thesis was to create a shape-memory polymeric actuator, where the capability for non-synthetic tuning of the actuation performance is combined with reprocessability. Physically cross-linked polymeric matrices provide a solid material platform, where the in situ processing methods can be employed for modification of the composition and morphology, resulting in the fine tuning of the related mechanical properties and shape-memory actuation capability. The morphological features, required forSoft actuators have drawn significant attention due to their relevance for applications, such as artificial muscles in devices developed for medicine and robotics. Tuning their performance and expanding their functionality are frequently done by means of chemical modification. The introduction of structural elements rendering non-synthetic modification of the performance possible, as well as control over physical appearance and facilitating their recycling is a subject of a great interest in the field of smart materials. The primary aim of this thesis was to create a shape-memory polymeric actuator, where the capability for non-synthetic tuning of the actuation performance is combined with reprocessability. Physically cross-linked polymeric matrices provide a solid material platform, where the in situ processing methods can be employed for modification of the composition and morphology, resulting in the fine tuning of the related mechanical properties and shape-memory actuation capability. The morphological features, required for shape-memory polymeric actuators, namely two crystallisable domains and anchoring points for physical cross-links, were embedded into a multiblock copolymer with poly(ε-caprolactone) and poly(L-lactide) segments (PLLA-PCL). Here, the melting transition of PCL was bisected into the actuating and skeleton-forming units, while the cross-linking was introduced via PLA stereocomplexation in blends with oligomeric poly(D-lactide) (ODLA). PLLA segment number average length of 12-15 repeating units was experimentally defined to be capable of the PLA stereocomplexes formation, but not sufficient for the isotactic crystallisation. Multiblock structure and phase dilution broaden the PCL melting transition, facilitating its separation into two conditionally independent crystalline domains. Low molar mass of the PLA stereocomplex components and a multiblock structure enables processing and reprocessing of the PLLA-PCL / ODLA blends with common non-destructive techniques. The modularity of the PLLA-PCL structure and synthetic approach allows for independent tuning of the properties of its components. The designed material establishes a solid platform for non-synthetic tuning of thermomechanical and structural properties of thermoplastic elastomers. To evaluate the thermomechanical stability of the formed physical network, three criteria were appraised. As physical cross-links, PLA stereocomplexes have to be evenly distributed within the material matrix, their melting temperature shall not overlap with the thermal transitions of the PCL domains and they have to maintain the structural integrity within the strain ε ranges further applied in the shape-memory actuation experiments. Assigning PCL the function of the skeleton-forming and actuating units, and PLA stereocomplexes the role of physical netpoints, shape-memory actuation was realised in the PLLA-PCL / ODLA blends. Reversible strain of shape-memory actuation was found to be a function of PLA stereocomplex crystallinity, i.e. physical cross-linking density, with a maximum of 13.4 ± 1.5% at PLA stereocomplex content of 3.1 ± 0.3 wt%. In this way, shape-memory actuation can be tuned via adjusting the composition of the PLLA-PCL / ODLA blend. This makes the developed material a valuable asset in the production of cost-effective tunable soft polymeric actuators for the applications in medicine and soft robotics.show moreshow less
  • Weiche Polymer-Aktuatoren haben, dank ihrer Bedeutung bei Anwendungen wie z.B. als künstliche Muskeln in Geräten oder in Medizin und Robotik, maßgeblich Aufmerksamkeit erregt. Das Einstellen ihrer Leistung und die Erweiterung ihrer Funktionalität werden oft mittels chemischer Modifizierung durchgeführt. Die Einführung struktureller Elemente, die durch nicht-synthetische Prozesse hervorgerufene Einstellung von Eigenschaften, sowie die Kontrolle der physikalischen Parameter und die Möglichkeit, das Material erneut zu verarbeiten, sind von besonderem Interesse für das Design von intelligenten Werkstoffen. Das Ziel dieser Doktorarbeit war es einen polymeren Formgedächtnis-Aktuator zu entwickeln, der die durch nicht-synthetische Prozesse hervorgerufene Einstellung der Aktuator Parameter mit erneuter Formgebung kombiniert. Physikalisch vernetzte Polymermatrizen stellen dafür eine solide Materialbasis dar, wobei in situ Verarbeitungsmethoden zum Ändern der Zusammensetzung und der Morphologie verwendet werden können. Die Folge davon ist eineWeiche Polymer-Aktuatoren haben, dank ihrer Bedeutung bei Anwendungen wie z.B. als künstliche Muskeln in Geräten oder in Medizin und Robotik, maßgeblich Aufmerksamkeit erregt. Das Einstellen ihrer Leistung und die Erweiterung ihrer Funktionalität werden oft mittels chemischer Modifizierung durchgeführt. Die Einführung struktureller Elemente, die durch nicht-synthetische Prozesse hervorgerufene Einstellung von Eigenschaften, sowie die Kontrolle der physikalischen Parameter und die Möglichkeit, das Material erneut zu verarbeiten, sind von besonderem Interesse für das Design von intelligenten Werkstoffen. Das Ziel dieser Doktorarbeit war es einen polymeren Formgedächtnis-Aktuator zu entwickeln, der die durch nicht-synthetische Prozesse hervorgerufene Einstellung der Aktuator Parameter mit erneuter Formgebung kombiniert. Physikalisch vernetzte Polymermatrizen stellen dafür eine solide Materialbasis dar, wobei in situ Verarbeitungsmethoden zum Ändern der Zusammensetzung und der Morphologie verwendet werden können. Die Folge davon ist eine präzise Einstellung der entsprechenden mechanischen Eigenschaften und der Formgedächtnis-Aktuator-Leistung. Die morphologischen Elemente, die für die polymeren Formgedächtnis-Aktuatoren benötig werden, nämlich zwei kristallisierbare Domänen und Verankerungspunkte für die physikalischen Cross-Links, wurden in einem Multiblock-Copolymer aus Poly(ε-Caprolakton) und Poly(L-Lactid) Segmenten (PLLA-PCL) integriert. Die Cross-Links wurden durch PLA-Stereokomplexe in Blends mit Poly(D-Lactid) Oligomer (ODLA) geformt. Um die thermomechanische Beständigkeit der hergestellten physikalischen Vernetzung einzuschätzen, wurden drei Kriterien bewertet. Die Erfüllung des morphologischen Kriteriums, gleichmäßige Verteilung innerhalb des Materials, wurde aus der Mikrophasenstruktur abgeleitet. Diese bestand aus einer kontinuierlichen PCL Phase und den isolierten PLA Domänen mit einem durchschnittlichen Domänenabstand von nm Maßstab. Die Schmelzübergänge von PLA Stereokomplexen und PCL überschnitten sich nicht, womit das thermische Kriterium erfüllt wurde. Die Gehalts- und Dehnungsbereiche der strukturelle Beständigkeit der PLA Stereokomplexe wurde in einer detaillierten Untersuchung der mechanischen Eigenschaften mittels Zug-, Dehnungsrückstellungs- und Spannungsrelaxationsversuchen definiert. Indem PCL die skelettbildende und die Aktuatorfunktion zugeordnet wurde, und die PLA Stereokomplexe die Rolle des physikalischen Netzwerks übernehmen, lassen sich in den PLLA-PCL / ODLA Polymerblends Formgedächtniseffekte ausführen. Des Weiteren wurde die Formgedächtnis-Aktuation ε′rev als eine Funktion des Gehalts an PLA Stereokomplex φc mit einem extremalen Charakter festgestellt, d.h. von der Dichte der physikalischen Cross-Links abhängt. Dadurch könnte ε′rev im PLLA-PCL / ODLA System mittels Variation der Zusammensetzung eingestellt werden. Dies verschafft dem entwickelten Polymermaterial ein wertvoller Vorteil bei der Herstellung von kosteffektiven, skalierbaren polymeren Formgedächtnis-Aktuatoren für Anwendungen in der Medizin und der Robotik.show moreshow less

Download full text files

  • SHA-512:6421d3d91ee1105cb076c2e166409fa7b63d27f9ffe7323eb53996f648b88f7ac6138641d2b8dfcb8b703122a77c934cf1d61d3e33bcf8a06161dbba7365c7d6

Export metadata

Metadaten
Author details:Victor IzraylitORCiDGND
URN:urn:nbn:de:kobv:517-opus4-518434
DOI:https://doi.org/10.25932/publishup-51843
Reviewer(s):Jonny BlakerORCiD, Jukka SeppäläORCiD
Supervisor(s):Andreas Lendlein, Dieter Neher
Publication type:Doctoral Thesis
Language:English
Date of first publication:2021/09/28
Publication year:2021
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2021/09/07
Release date:2021/09/28
Tag:Aktuator; Formgedächtnis; Multiblock Copolymer; Polymerchemie; Polymerphysik; Stereokomplex; thermoplastisches Elastomer
Actuator; Multiblock copolymer; Polymer chemistry; Polymer physics; Shape-memory; Stereocomplex; Thermoplastic elastomer
Number of pages:104
RVK - Regensburg classification:VK 8007, UV 9240
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.