The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10 of 21
Back to Result List

Modelling of nitrogen cycles in intensive winter wheat–summer maize double cropping systems in the North China Plain

Modellierung von Stickstoffkreisläufen in intensiven Winterweizen–Sommermais-Doppelfruchtfolgen in der Nordchinesischen Tiefebene

  • The North China Plain (NCP) is one of the most productive and intensive agricultural regions in China. High doses of mineral nitrogen (N) fertiliser, often combined with flood irrigation, are applied, resulting in N surplus, groundwater depletion and environmental pollution. The objectives of this thesis were to use the HERMES model to simulate the N cycle in winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) double crop rotations and show the performance of the HERMES model, of the new ammonia volatilisation sub-module and of the new nitrification inhibition tool in the NCP. Further objectives were to assess the models potential to save N and water on plot and county scale, as well as on short and long-term. Additionally, improved management strategies with the help of a model-based nitrogen fertiliser recommendation (NFR) and adapted irrigation, should be found. Results showed that the HERMES model performed well under growing conditions of the NCP and was able to describe the relevant processes related to soil–plantThe North China Plain (NCP) is one of the most productive and intensive agricultural regions in China. High doses of mineral nitrogen (N) fertiliser, often combined with flood irrigation, are applied, resulting in N surplus, groundwater depletion and environmental pollution. The objectives of this thesis were to use the HERMES model to simulate the N cycle in winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) double crop rotations and show the performance of the HERMES model, of the new ammonia volatilisation sub-module and of the new nitrification inhibition tool in the NCP. Further objectives were to assess the models potential to save N and water on plot and county scale, as well as on short and long-term. Additionally, improved management strategies with the help of a model-based nitrogen fertiliser recommendation (NFR) and adapted irrigation, should be found. Results showed that the HERMES model performed well under growing conditions of the NCP and was able to describe the relevant processes related to soil–plant interactions concerning N and water during a 2.5 year field experiment. No differences in grain yield between the real-time model-based NFR and the other treatments of the experiments on plot scale in Quzhou County could be found. Simulations with increasing amounts of irrigation resulted in significantly higher N leaching, higher N requirements of the NFR and reduced yields. Thus, conventional flood irrigation as currently practised by the farmers bears great uncertainties and exact irrigation amounts should be known for future simulation studies. In the best-practice scenario simulation on plot-scale, N input and N leaching, but also irrigation water could be reduced strongly within 2 years. Thus, the model-based NFR in combination with adapted irrigation had the highest potential to reduce nitrate leaching, compared to farmers practice and mineral N (Nmin)-reduced treatments. Also the calibrated and validated ammonia volatilisation sub-module of the HERMES model worked well under the climatic and soil conditions of northern China. Simple ammonia volatilisation approaches gave also satisfying results compared to process-oriented approaches. During the simulation with Ammonium sulphate Nitrate with nitrification inhibitor (ASNDMPP) ammonia volatilisation was higher than in the simulation without nitrification inhibitor, while the result for nitrate leaching was the opposite. Although nitrification worked well in the model, nitrification-born nitrous oxide emissions should be considered in future. Results of the simulated annual long-term (31 years) N losses in whole Quzhou County in Hebei Province were 296.8 kg N ha−1 under common farmers practice treatment and 101.7 kg N ha−1 under optimised treatment including NFR and automated irrigation (OPTai). Spatial differences in simulated N losses throughout Quzhou County, could only be found due to different N inputs. Simulations of an optimised treatment, could save on average more than 260 kg N ha−1a−1 from fertiliser input and 190 kg N ha−1a−1 from N losses and around 115.7 mm a−1 of water, compared to farmers practice. These long-term simulation results showed lower N and water saving potential, compared to short-term simulations and underline the necessity of long-term simulations to overcome the effect of high initial N stocks in soil. Additionally, the OPTai worked best on clay loam soil except for a high simulated denitrification loss, while the simulations using farmers practice irrigation could not match the actual water needs resulting in yield decline, especially for winter wheat. Thus, a precise adaption of management to actual weather conditions and plant growth needs is necessary for future simulations. However, the optimised treatments did not seem to be able to maintain the soil organic matter pools, even with full crop residue input. Extra organic inputs seem to be required to maintain soil quality in the optimised treatments. HERMES is a relatively simple model, with regard to data input requirements, to simulate the N cycle. It can offer interpretation of management options on plot, on county and regional scale for extension and research staff. Also in combination with other N and water saving methods the model promises to be a useful tool.show moreshow less
  • Die Nordchinesische Tiefebene (NCP) ist eine der produktivsten und intensivsten Agrarregionen Chinas. Große Düngermengen an mineralischem Stickstoff (N) und der oft in Kombination genutzten Überflutungsbewässerung führen zu Stickstoffüberflüssen, Grundwasserabsenkung und Umweltverschmutzung. Ziel dieser Arbeit war die Simulation des N-Kreislaufes in Winterweizen (Triticum aestivum L.)–Sommermais (Zea mays L.) -Doppelfruchtfolgen mit dem HERMES Modell. Weitere Ziele waren ein Test der Modellgüte, sowie das Potential des Modells aufzuzeigen, N und Wasser mit Hilfe einer modellbasierten N-Düngeempfehlung (NFR) und angepassten Bewässerungsstrategien einzusparen. Dies erfolgte auf Schlag- und Countyebene wie auch in Kurzzeit- und in Langzeitsimulationen, um verbesserte Managementstrategien für Quzhou-County in der Hebei-Provinz zu finden. Die Ergebnisse zeigten, dass das HERMES Modell gut unter den Wachstumsbedingungen der NCP funktioniert und alle relevanten Boden-Pflanze-Interaktionen während der Versuchszeit von 2,5 Jahren in Bezug aufDie Nordchinesische Tiefebene (NCP) ist eine der produktivsten und intensivsten Agrarregionen Chinas. Große Düngermengen an mineralischem Stickstoff (N) und der oft in Kombination genutzten Überflutungsbewässerung führen zu Stickstoffüberflüssen, Grundwasserabsenkung und Umweltverschmutzung. Ziel dieser Arbeit war die Simulation des N-Kreislaufes in Winterweizen (Triticum aestivum L.)–Sommermais (Zea mays L.) -Doppelfruchtfolgen mit dem HERMES Modell. Weitere Ziele waren ein Test der Modellgüte, sowie das Potential des Modells aufzuzeigen, N und Wasser mit Hilfe einer modellbasierten N-Düngeempfehlung (NFR) und angepassten Bewässerungsstrategien einzusparen. Dies erfolgte auf Schlag- und Countyebene wie auch in Kurzzeit- und in Langzeitsimulationen, um verbesserte Managementstrategien für Quzhou-County in der Hebei-Provinz zu finden. Die Ergebnisse zeigten, dass das HERMES Modell gut unter den Wachstumsbedingungen der NCP funktioniert und alle relevanten Boden-Pflanze-Interaktionen während der Versuchszeit von 2,5 Jahren in Bezug auf N und Wasser beschreiben konnte. Es konnten keine Ertragsunterschiede zwischen Echtzeit modellbasierter NFR und anderen Behandlungen auf Schlagebene in Quzhou-County festgestellt werden. Simulationen mit steigenden Bewässerungsgaben ergaben signifikant höheren N-Austrag, höheren N-Bedarf der NFR und reduzierte Erträge. Daher birgt die konventionelle Überflutungsbewässerung, wie sie derzeit von den Landwirten praktiziert wird, große Unsicherheiten und genaue Bewässerungsmengen sollten für zukünftige Simulationsstudien bekannt sein. In der optimierten („best-practice“) Szenariosimulation auf Schlagebene konnte insbesondere die N-Düngung und der N-Austrag, aber auch die Bewässerung innerhalb 2 Jahre stark gesenkt werden. Daher hat die modellbasierte NFR in Kombination mit angepasster Bewässerung, im Gegensatz zu konventioneller und mineralischen N (Nmin)-reduzierter Behandlung, das höchste Potential Nitratauswaschung zu reduzieren. Auch das kalibrierte und validierte Ammoniak-Verflüchtigungs-modul des HERMES Modells funktionierte gut unter den Klima- und Bodenverhältnissen in Nordchina. Die zwei einfacheren Ammoniak-Verflüchtigungsansätze erreichten auch gute Ergebnisse, während die zwei prozessorientierten Ansätze Umwelteinflüsse besser darstellen konnten. In der Simulation mit der Ammonsulfatsalpeter-Düngung mit Nitrifikationsinhibitor (ASNDMPP) war die Ammoniakverflüchtigung höher als in der Simulation ohne Nitrifikationshemmer, während das Ergebnis für Nitratauswaschung umgekehrt war. Obwohl der Nitrifikationsansatz gut funktionierte, sollten von der Nitrifikation stammende Lachgasemissionen in Zukunft im Modell berücksichtigt werden. Im Jahresdurchschnitt lagen die simulierten Langzeit (31 Jahre) N-Verluste für eine Weizen-Mais-Doppelfruchtfolge im ganzen Quzhou-County bei 296,8 kg N ha−1 unter konventioneller Düngung und bei 101,7 kg N ha−1 unter optimierter Düngung inklusive NFR and automatischer Bewässerung (OPTai). Räumliche Unterschiede von simulierten N-Verlusten in Quzhou-County konnten nur aufgrund von unterschiedlichen N-Düngemengen gefunden werden. Simulationen einer optimierten Behandlung konnten im Durchschnitt mehr als 260 kg N ha−1a−1 an N-Düngung und 190 kg N ha−1a−1 an N-Verlusten und 115,7 mm a−1 an Wasser, im Vergleich zur konventionellen Behandlung, einsparen. Im Vergleich zu den Kurzzeitsimulationen ist es ein niedrigeres N- und Wasserreduktionspotential und unterstreicht die Notwendigkeit von Langzeitsimulationen um den Effekt von hohen Anfangs Nmin-Gehalten im Boden zu berücksichtigen. Zudem kommt, dass auf tonigem Lehm Simulationen mit konventioneller Bewässerung nicht den aktuellen Wasserbedarf decken konnten, welches zu Ertragseinbußen insbesondere für Winterweizen führte. Die OPTai Behandlung funktionierte bis auf hohe simulierte Denitrifikationsverluste auf diesem Standort am besten. Daher ist dort für zukünftige Simulationen ein an aktuelle Wetterverhältnisse und Pflanzenwachstumsbedürfnisse angepasstes Management von N und Wasser nötig. Trotzdem schienen die optimierten Behandlungen, trotz voller Strohrückgabe, die organische Bodensubstanz nicht zu erhalten. Zur Sicherung der Bodenfruchtbarkeit in den optimierten Behandlungen scheinen zusätzliche organische Düngergaben wahrscheinlich notwendig zu sein. HERMES ist ein relativ einfaches Modell, im Hinblick auf die Anforderungen an die Eingangsdaten, um den Stickstoffkreislauf zu simulieren. Es ermöglicht, Managementoptionen für Berater und Wissenschaftler auf Schlag-, County- und Regionalebene anzuwenden. Auch in Kombination mit anderen N- und Wasser-Einsparmethoden verspricht das Modell ein nützliches Instrument zu sein.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Anna Michalczyk
URN:urn:nbn:de:kobv:517-opus4-444213
DOI:https://doi.org/10.25932/publishup-44421
Subtitle (English):site specific optimisation of nitrogen fertilisation with regard to nitrogen losses, water protection, productivity and regionalisation
Reviewer(s):Kurt Christian KersebaumORCiDGND, Rolf NiederGND, Jürgen BöttcherGND
Supervisor(s):Kurt Christian Kersebaum
Publication type:Doctoral Thesis
Language:English
Publication year:2019
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2019/12/11
Release date:2020/03/02
Tag:China; Simulation; Stickstoff
China; nitrogen; simulation
Number of pages:X, 154
RVK - Regensburg classification:RR 69160, ZC 13631
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.