• Treffer 3 von 7
Zurück zur Trefferliste

Implementing and quantifying the shape-memory effect of single polymeric micro/nanowires with an atomic force microscope

  • The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10 +/- 1% or 21 +/- 1% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of sigma(max,app)=1.2 +/- 0.1 and 33.3 +/- 0.1MPa were obtained for a single microwire and nanowire, respectively. TheThe implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10 +/- 1% or 21 +/- 1% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of sigma(max,app)=1.2 +/- 0.1 and 33.3 +/- 0.1MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Liang Fang, Oliver E. C. GouldORCiD, Liudmila Lysyakova, Yi Jiang, Tilman SauterGND, Oliver Frank, Tino Becker, Michael Schossig, Karl KratzORCiD, Andreas LendleinORCiDGND
DOI:https://doi.org/10.1002/cphc.201701362
ISSN:1439-4235
ISSN:1439-7641
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/29683553
Titel des übergeordneten Werks (Englisch):ChemPhysChem : a European journal of chemical physics and physical chemistry
Verlag:Wiley-VCH
Verlagsort:Weinheim
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:23.04.2018
Erscheinungsjahr:2018
Datum der Freischaltung:15.10.2021
Freies Schlagwort / Tag:atomic force microscopy; cyclic thermomechanical testing; materials science; shape-memory effect; soft matter micro- and nanowires
Band:19
Ausgabe:16
Seitenanzahl:7
Erste Seite:2078
Letzte Seite:2084
Fördernde Institution:Helmholtz-Association through programme-oriented funding
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.