The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 24 of 40
Back to Result List

Enzymatic action as switch of bulk to surface degradation of clicked gelatin-based networks

  • Polymer degradation occurs under physiological conditions in vitro and in vivo, especially when bonds susceptible to hydrolysis are present in the polymer. Understanding of the degradation mechanism, changes of material properties over time, and overall rate of degradation is a necessary prerequisite for the knowledge-based design of polymers with applications in biomedicine. Here, hydrolytic degradation studies of gelatin-based networks synthesized by copper-catalyzed azide-alkyne cycloaddition reaction are reported, which were performed with or without addition of an enzyme. In all cases, networks with a stilbene as crosslinker proofed to be more resistant to degradation than when an octyl diazide was used. Without addition of an enzyme, the rate of degradation was ruled by the crosslinking density of the network and proceeded via a bulk degradation mechanism. Addition of Clostridium histolyticum collagenase resulted in a much enhanced rate of degradation, which furthermore occurred via surface erosion. The mesh size of thePolymer degradation occurs under physiological conditions in vitro and in vivo, especially when bonds susceptible to hydrolysis are present in the polymer. Understanding of the degradation mechanism, changes of material properties over time, and overall rate of degradation is a necessary prerequisite for the knowledge-based design of polymers with applications in biomedicine. Here, hydrolytic degradation studies of gelatin-based networks synthesized by copper-catalyzed azide-alkyne cycloaddition reaction are reported, which were performed with or without addition of an enzyme. In all cases, networks with a stilbene as crosslinker proofed to be more resistant to degradation than when an octyl diazide was used. Without addition of an enzyme, the rate of degradation was ruled by the crosslinking density of the network and proceeded via a bulk degradation mechanism. Addition of Clostridium histolyticum collagenase resulted in a much enhanced rate of degradation, which furthermore occurred via surface erosion. The mesh size of the hydrogels (>7nm) was in all cases larger than the hydrodynamic radius of the enzyme (4.5nm) so that even in very hydrophilic networks with large mesh size enzymes may be used to induce a fast surface degradation mechanism. This observation is of general interest when designing hydrogels to be applied in the presence of enzymes, as the degradation mechanism and material performance are closely interlinked. Copyright (c) 2016 John Wiley & Sons, Ltd.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Susanna Piluso, Andreas LendleinORCiDGND, Axel T. NeffeORCiDGND
DOI:https://doi.org/10.1002/pat.3962
ISSN:1042-7147
ISSN:1099-1581
Title of parent work (English):Polymers for advanced technologies
Publisher:Wiley
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:Biopolymer; Degradation; Hydrogel
Volume:28
Number of pages:7
First page:1318
Last Page:1324
Funding institution:Helmholtz Association
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.