• search hit 48 of 160
Back to Result List

BLUF Hydrogen network dynamics and UV/Vis spectra: A combined molecular dynamics and quantum chemical study

  • Blue light sensing using flavin (BLUF) protein photoreceptor domains change their hydrogen bond network after photoexcitation. To explore this phenomenon, BLUF domains from R. sphaeroides were simulated using Amber99 molecular dynamics (MD). Five starting configurations were considered, to study different BLUF proteins (AppA/BlrB), Trp conformations (Win/Wout), structure determination (X-ray/NMR), and finally, His protonation states. We found dependencies of the hydrogen bonds on almost all parameters. Our data show an especially strong correlation of the Trp position and hydrogen bonds involving Gln63. The latter is in some contradiction to earlier results (Obanayama et al., Photochem. Photobiol. 2008, 84 10031010). Possible origins and implications are discussed. Our calculations support conjectures that Gln63 is more flexible with Trp104 in Win position. Using snapshots from MD and time-dependent density functional theory, UV/vis spectra for the chromophore were determined, which account for molecular motion of the protein underBlue light sensing using flavin (BLUF) protein photoreceptor domains change their hydrogen bond network after photoexcitation. To explore this phenomenon, BLUF domains from R. sphaeroides were simulated using Amber99 molecular dynamics (MD). Five starting configurations were considered, to study different BLUF proteins (AppA/BlrB), Trp conformations (Win/Wout), structure determination (X-ray/NMR), and finally, His protonation states. We found dependencies of the hydrogen bonds on almost all parameters. Our data show an especially strong correlation of the Trp position and hydrogen bonds involving Gln63. The latter is in some contradiction to earlier results (Obanayama et al., Photochem. Photobiol. 2008, 84 10031010). Possible origins and implications are discussed. Our calculations support conjectures that Gln63 is more flexible with Trp104 in Win position. Using snapshots from MD and time-dependent density functional theory, UV/vis spectra for the chromophore were determined, which account for molecular motion of the protein under ambient conditions. In accord with experiment, it is found that the UV/vis spectra of BLUF bound flavin are red-shifted and thermally broadened for all calculated p ? p* transitions, relative to gas phase flavin at T = 0 K. However, differences in the spectra between the various BLUF configurations cannot be resolved with the present approach. (c) 2012 Wiley Periodicals, Inc.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jan P. Goetze, Claudio Greco, Roland Mitric, Vlasta Bonacic-Koutecky, Peter SaalfrankORCiDGND
DOI:https://doi.org/10.1002/jcc.23056
ISSN:0192-8651
Title of parent work (English):JOURNAL OF COMPUTATIONAL CHEMISTRY
Publisher:WILEY-BLACKWELL
Place of publishing:HOBOKEN
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:BLUF domains; TD-DFT; blue-light sensor; flavin; molecular dynamics
Volume:33
Issue:28
Number of pages:10
First page:2233
Last Page:2242
Funding institution:BMBF-project GoFORSYS; Volkswagen-Stiftung; Humboldt Foundation; DFG
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.