The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 97 of 691
Back to Result List

Endothelin type A and B receptors in the control of afferent and efferent arterioles in mice

  • Background. Endothelin 1 contributes to renal blood flow control and pathogenesis of kidney diseases. The differential effects, however, of endothelin 1 (ET-1) on afferent (AA) and efferent arterioles (EA) remain to be established. Methods. We investigated endothelin type A and B receptor (ETA-R, ETB-R) functions in the control of AA and EA. Arterioles of ETB-R deficient, rescued mice [ETB (-/-)] and wild types [ETB(+/+)] were microperfused. Results. ET-1 constricted AA stronger than EA in ETB (-/-) and ETB(+/+) mice. Results in AA: ET-1 induced similar constrictions in ETB(-/-) and ETB(+/+) mice. BQ-123 (ETA-R antagonist) inhibited this response in both groups. ALA-ET-1 and IRL1620 (ETB-R agonists) had no effect on arteriolar diameter. L-NAME did neither affect basal diameters nor ET-1 responses. Results in EA: ET-1 constricted EA stronger in ETB(+/+) compared to ETB(-/-). BQ-123 inhibited the constriction completely only in ETB(-/-). ALA-ET-1 and IRL1620 constricted only arterioles of ETB(+/+) mice. L-NAME decreased basal diameterBackground. Endothelin 1 contributes to renal blood flow control and pathogenesis of kidney diseases. The differential effects, however, of endothelin 1 (ET-1) on afferent (AA) and efferent arterioles (EA) remain to be established. Methods. We investigated endothelin type A and B receptor (ETA-R, ETB-R) functions in the control of AA and EA. Arterioles of ETB-R deficient, rescued mice [ETB (-/-)] and wild types [ETB(+/+)] were microperfused. Results. ET-1 constricted AA stronger than EA in ETB (-/-) and ETB(+/+) mice. Results in AA: ET-1 induced similar constrictions in ETB(-/-) and ETB(+/+) mice. BQ-123 (ETA-R antagonist) inhibited this response in both groups. ALA-ET-1 and IRL1620 (ETB-R agonists) had no effect on arteriolar diameter. L-NAME did neither affect basal diameters nor ET-1 responses. Results in EA: ET-1 constricted EA stronger in ETB(+/+) compared to ETB(-/-). BQ-123 inhibited the constriction completely only in ETB(-/-). ALA-ET-1 and IRL1620 constricted only arterioles of ETB(+/+) mice. L-NAME decreased basal diameter in ETB(+/+), but not in ETB(-/-) mice and increased the ET-1 response similarly in both groups. The L-NAME actions indicate a contribution of ETB-R in basal nitric oxide (NO) release in EA and suggest dilatory action of ETA-R in EA. Conclusions. ETA-R mediates vasoconstriction in AA and contributes to vasoconstriction in EA in this mouse model. ETB-R has no effect in AA but mediates basal NO release and constriction in EA. The stronger effect of ET-1 on AA supports observations of decreased glomerular filtration rate to ET-1 and indicates a potential contribution of ET-1 to the pathogenesis of kidney diseases.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Janice Schildroth, Juliane Rettig-Zimmermann, Philipp Kalk, Andreas Steege, Michael Faehling, Mauricio Sendeski, Alexander Paliege, En Yin Lai, Sebastian Bachmann, Pontus B. Persson, Berthold HocherORCiDGND, Andreas Patzak
DOI:https://doi.org/10.1093/ndt/gfq534
ISSN:0931-0509
Title of parent work (English):Nephrology, dialysis, transplantation
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:ETB receptor-deficient mouse; endothelin; glomerular arterioles; renal haemodynamics
Volume:26
Issue:3
Number of pages:11
First page:779
Last Page:789
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.