• search hit 20 of 136
Back to Result List

Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities

  • Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magnetomechanical actuators which are based on a single crystalline domain of oligo(omega-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to otherComposite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magnetomechanical actuators which are based on a single crystalline domain of oligo(omega-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Muhammad Yasar RazzaqORCiDGND, Marc BehlORCiDGND, Andreas LendleinORCiDGND
DOI:https://doi.org/10.1557/adv.2019.123
ISSN:2059-8521
Title of parent work (English):MRS Advances
Publisher:Cambridge Univ. Press
Place of publishing:New York
Publication type:Article
Language:English
Date of first publication:2019/02/13
Publication year:2019
Release date:2021/05/17
Volume:4
Issue:19
Number of pages:9
First page:1057
Last Page:1065
Funding institution:Helmholtz Association
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.