• search hit 2 of 5
Back to Result List

Predator-prey cycles in an aquatic microcosm : testing hypotheses of mechanism

  • 1. Fussmann et al. (2000) presented a simple mechanistic model to explore predator-prey dynamics of a rotifer species feeding on green algae. Predictions were tested against experimental data from a chemostat system housing the planktonic rotifer Brachionus calyciflorus and the green alga Chlorella vulgaris. 2. The model accurately predicted qualitative behaviour of the system (extinction, equilibria and limit cycles), but poorly described features of population cycles such as the period and predator-prey phase relationship. These discrepancies indicate that the model lacked some biological mechanism(s) crucial to population cycles. 3. Here candidate hypotheses for the 'missing biology' are quantified as modifications to the existing model and are evaluated for consistency with the chemostat data. The hypotheses are: (1) viability of eggs produced by rotifers increases with food concentration, (2) nutritional value of algae increases with nitrogen availability, (3) algal physiological state varies with the accumulation of toxins in1. Fussmann et al. (2000) presented a simple mechanistic model to explore predator-prey dynamics of a rotifer species feeding on green algae. Predictions were tested against experimental data from a chemostat system housing the planktonic rotifer Brachionus calyciflorus and the green alga Chlorella vulgaris. 2. The model accurately predicted qualitative behaviour of the system (extinction, equilibria and limit cycles), but poorly described features of population cycles such as the period and predator-prey phase relationship. These discrepancies indicate that the model lacked some biological mechanism(s) crucial to population cycles. 3. Here candidate hypotheses for the 'missing biology' are quantified as modifications to the existing model and are evaluated for consistency with the chemostat data. The hypotheses are: (1) viability of eggs produced by rotifers increases with food concentration, (2) nutritional value of algae increases with nitrogen availability, (3) algal physiological state varies with the accumulation of toxins in the chemostat and (4) algae evolve in response to predation. 4. Only Hypothesis 4 is compatible with empirical observations and thus may provide important insight into how prey evolution affects predator- prey dynamics.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Kyle W. Shertzer, Stephen P. Ellner, Gregor F. Fussmann, Nelson G. Hairston
URL:http://www.blackwell-synergy.com/Journals/issuelist.asp?journal=jae
Publication type:Article
Language:English
Year of first publication:2002
Publication year:2002
Release date:2017/03/24
Source:Journal of animal ecology. - 71 (2002), S. 802 - 815
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.