• search hit 6 of 39
Back to Result List

Role of intestinal bacteria in the conversion of dietary sulfonates

  • Over the last decades, interest in the impact of the intestinal microbiota on host health has steadily increased. Diet is a major factor that influences the gut microbiota and thereby indirectly affects human health. For example, a high fat diet rich in saturated fatty acids led to an intestinal proliferation of the colitogenic bacterium Bilophila (B.) wadsworthia by stimulating the release of the bile acid taurocholate (TC). TC contains the sulfonated head group taurine, which undergoes conversion to sulfide (H2S) by B. wadsworthia. In a colitis prone murine animal model (IL10 / mice), the bloom of B. wadsworthia was accompanied by an exacerbation of intestinal inflammation. B. wadsworthia is able to convert taurine and also other sulfonates to H2S, indicating the potential association of sulfonate utilization and the stimulation of colitogenic bacteria. This potential link raised the question, whether dietary sulfonates or their sulfonated metabolites stimulate the growth of colitogenic bacteria such as B. wadsworthia and whetherOver the last decades, interest in the impact of the intestinal microbiota on host health has steadily increased. Diet is a major factor that influences the gut microbiota and thereby indirectly affects human health. For example, a high fat diet rich in saturated fatty acids led to an intestinal proliferation of the colitogenic bacterium Bilophila (B.) wadsworthia by stimulating the release of the bile acid taurocholate (TC). TC contains the sulfonated head group taurine, which undergoes conversion to sulfide (H2S) by B. wadsworthia. In a colitis prone murine animal model (IL10 / mice), the bloom of B. wadsworthia was accompanied by an exacerbation of intestinal inflammation. B. wadsworthia is able to convert taurine and also other sulfonates to H2S, indicating the potential association of sulfonate utilization and the stimulation of colitogenic bacteria. This potential link raised the question, whether dietary sulfonates or their sulfonated metabolites stimulate the growth of colitogenic bacteria such as B. wadsworthia and whether these bacteria convert sulfonates to H2S. Besides taurine, which is present in meat, fish and life-style beverages, other dietary sulfonates are part of daily human nutrition. Sulfolipids such as sulfoquinovosyldiacylglycerols (SQDG) are highly abundant in salad, parsley and the cyanobacterium Arthrospira platensis (Spirulina). Based on previous findings, Escherichia (E.) coli releases the polar headgroup sulfoquinovose (SQ) from SQDG. Moreover, E. coli is able to convert SQ to 2,3 dihydroxypropane 1 sulfonate (DHPS) under anoxic conditions. DHPS is also converted to H2S by B. wadsworthia or by other potentially harmful gut bacteria such as members of the genus Desulfovibrio. However, only few studies report the conversion of sulfonates to H2S by bacteria directly isolated from the human intestinal tract. Most sulfonate utilizing bacteria were obtained from environmental sources such as soil or lake sediment or from potentially intestinal sources such as sewage. In the present study, fecal slurries from healthy human subjects were incubated with sulfonates under strictly anoxic conditions, using formate and lactate as electron donors. Fecal slurries that converted sulfonates to H2S, were used as a source for the isolation of H2S forming bacteria. Isolates were identified based on their 16S ribosomal RNA (16S rRNA) gene sequence. In addition, conventional C57BL/6 mice were fed a semisynthetic diet supplemented with the SQDG rich Spirulina (SD) or a Spirulina free control diet (CD). During the intervention, body weight, water and food intake were monitored and fecal samples were collected. After three weeks, mice were killed and organ weight and size were measured, intestinal sulfonate concentrations were quantified, gut microbiota composition was determined and parameters of intestinal and hepatic fat metabolism were analyzed. Human fecal slurries converted taurine, isethionate, cysteate, 3 sulfolacate, SQ and DHPS to H2S. However, inter individual differences in the degradation of these sulfonates were observed. Taurine, isethionate, and 3 sulfolactate were utilized by fecal microbiota of all donors, while SQ, DHPS and cysteate were converted to H2S only by microbiota from certain individuals. Bacterial isolates from human feces able to convert sulfonates to H2S were identified as taurine-utilizing Desulfovibrio strains, taurine- and isethionate-utilizing B. wadsworthia, or as SQ- and 3-sulfolactate- utilizing E. coli. In addition, a co culture of E. coli and B. wadsworthia led to complete degradation of SQ to H2S, with DHPS as an intermediate. Of the human fecal isolates, B. wadsworthia and Desulfovibrio are potentially harmful. E. coli strains might be also pathogenic, but isolated E. coli strains from human feces were identified as commensal gut bacteria. Feeding SD to mice increased the cecal and fecal SQ concentration and altered the microbiota composition, but the relative abundance of SQDG or SQ converting bacteria and colitogenic bacteria was not enriched in mice fed SD for 21 days. SD did not affect the relative abundance of Enterobacteriaceae, to which the SQDG- and SQ-utilizing E. coli strain belong to. Furthermore, the abundance of B. wadsworthia decreased from day 2 to day 9 in feces, but recovered afterwards in the same mice. In cecum, the family Desulfovibrionaceae, to which B. wadsworthia and Desulfovibrio belong to, were reduced. No changes in the number of B. wadsworthia in cecal contents or of Desulfovibrionaceae in feces were observed. SD led to a mild activation of the immune system, which was not observed in control mice fed CD. Mice fed SD had an increased body weight, a higher adipose tissue weight, and a decreased liver weight compared to the control mice, suggesting an impact of Spirulina supplementation on fat metabolism. However, expression levels of genes involved in intestinal and hepatic intracellular lipid uptake and availability were reduced. Further investigations on the lipid metabolism at protein level could help to clarify these discrepancies. In summary, humans differ in the ability of their fecal microbiota to utilize dietary sulfonates. While sulfonates stimulated the proliferation of potentially colitogenic isolates from human fecal slurries, the increased availability of SQ in Spirulina fed conventional mice did not lead to an enrichment of such bacteria. Presence or absence of these bacteria may explain the inter individual differences in sulfonate conversion observed for fecal slurries. This work provides new insights in the ability of intestinal bacteria to utilize sulfonates and thus, contributes to a better understanding of microbiota-mediated effects on dietary sulfonate utilization. Interestingly, feeding of the Spirulina-supplemented diet led to body-weight gain in mice in the first two days of intervention, the reasons for which are unknown.show moreshow less
  • Die Darmmikrobiota hat auf die menschliche Gesundheit einen großen Einfluss. Nahrungskom-ponente sind die Hauptquelle für bakterielle Substrate und beeinflussen somit das Wachstum von Darmbakterien. In einer Studie mit Mäusen führte z.B. eine Hochfettdiät zu einer erhöhten Freisetzung der Gallensäure Taurocholat (TC), was wiederum zur Anreicherung des kolitogenen Bakteriums Bilophila (B.) wadsworthia führte. In einem Interleukin-10-defizienten Maus-Model für Kolitis, führte eine erhöhte intestinale Verfügbarkeit von TC zu Darmentzündungen und Wachstum von B. wadsworthia. TC enthält den sulfonierten Taurin-Rest, der auch in Nahrungsmitteln wie Fisch und Fleisch enthalten ist, und von B. wadsworthia genutzt und zu Sulfid (H2S) reduziert werden kann. Bisher gibt es jedoch nur wenige Studien, welche die Umwandlung von Sulfonaten in H2S durch Darmbakterien belegen, wobei auch H2S mit Darmentzündungen in Verbindung gebracht wird. Aus diesen Literaturdaten resultierten die Fragen, ob Sulfonate aus der Nahrung das Wachstum von kolitogenenDie Darmmikrobiota hat auf die menschliche Gesundheit einen großen Einfluss. Nahrungskom-ponente sind die Hauptquelle für bakterielle Substrate und beeinflussen somit das Wachstum von Darmbakterien. In einer Studie mit Mäusen führte z.B. eine Hochfettdiät zu einer erhöhten Freisetzung der Gallensäure Taurocholat (TC), was wiederum zur Anreicherung des kolitogenen Bakteriums Bilophila (B.) wadsworthia führte. In einem Interleukin-10-defizienten Maus-Model für Kolitis, führte eine erhöhte intestinale Verfügbarkeit von TC zu Darmentzündungen und Wachstum von B. wadsworthia. TC enthält den sulfonierten Taurin-Rest, der auch in Nahrungsmitteln wie Fisch und Fleisch enthalten ist, und von B. wadsworthia genutzt und zu Sulfid (H2S) reduziert werden kann. Bisher gibt es jedoch nur wenige Studien, welche die Umwandlung von Sulfonaten in H2S durch Darmbakterien belegen, wobei auch H2S mit Darmentzündungen in Verbindung gebracht wird. Aus diesen Literaturdaten resultierten die Fragen, ob Sulfonate aus der Nahrung das Wachstum von kolitogenen Bakterien wie B. wadsworthia stimulieren und ob diese Bakterien Sulfonate zu H2S umwandeln können. Weitere Nahrungsmittel-Sulfonate sind die Sulfolipide Sulfoquinovosyldiacylglycerole (SQDG) in Salaten, Petersilie und Spirulina. Escherichia (E.) coli kann Sulfoquinovose (SQ) aus SQDG abspalten und in 2,3-Dihydroxypropan-1-sulfonat (DHPS) umwandeln, welches wiederum von B. wadsworthia oder einem Desulfovibrio-Stamm, einem anderen potenziell kolitogenem Darmbakterium, verwendet und zu H2S reduziert werden kann. In der vorliegenden Arbeit wurden Fäzes-Suspensionen von gesunden Menschen unter strikt anoxischen Bedingungen mit Sulfonaten und Formiat und Laktat als Elektronendonoren inkubiert. Aus den Fäzes-Suspensionen wurden H2S-bildende Bakterienstämme isoliert und identifiziert. Zusätzlich wurden konventionelle C57BL/6-Mäuse mit einer semisynthetischen Diät, welche mit SQDG-reicher Spirulina supplementiert war (SD), gefüttert. Während des Versuchs wurde das Körpergewicht der Mäuse, deren Wasser- und Nahrungsaufnahme bestimmt und Fäzesproben gesammelt. Nach drei Wochen wurden die intestinale Sulfonatkonzentration, die Zusammensetzung der Mikrobiota und die Parameter des hepatischen und intestinalen Fettstoffwechsels bestimmt. Die Ergebnisse zeigten, dass humane Fäzes-Suspensionen Taurin, Isethionat, Cysteat, 3-Sulfolaktat, SQ und DHPS mit interindividuellen Unterschieden zu H2S umwandeln. Als Sulfonat-umsetzende Bakterien wurden Stämme der Gattung Desulfovibrio, B. wadsworthia oder E. coli isoliert, wobei die Desulfovibrio-Stämme Taurin, B. wadsworthia Taurin und Isethionat und E. coli SQ und 3-Sulfolaktat zu H2S reduzieren konnten. Eine Kokultivierung von E. coli und B. wadsworthia zeigte den vollständigen Abbau von SQ über DHPS zu H2S. Die Gabe von SD an Mäuse erhöhte die intestinale SQ-Konzentration und veränderte die Mikrobiota-Zusammensetzung, jedoch war die Zellzahl von SQDG- oder SQ-umwandelnden Bakterien und kolitogenen Bakterien nicht erhöht. Die Zellzahl von B. wadsworthia in denselben Mäusen von Tag 2 bis 9 ab, normalisierte sich danach aber wieder. Im Zäkum war die Familie der Desulfovibrionaceae reduziert, zu welcher B. wadsworthia und Desulfovibrio-Stämme gehören. SD führte zu einer schwachen Aktivierung des Immunsystems und zur Erhöhung des Körpergewichtes. Zusammenfassend lässt sich sagen, dass Darmbakterien in der Lage sind, Sulfonate aus der Nahrung mit interindividuellen Unterschieden zu verwerten. Das Vorkommen von Bakterien könnte diese Unterschiede erklären. Diese Studie ermöglicht es uns, die biologische Rolle der mit der Nahrung aufgenommenen Sulfonate zu verstehen und könnte neue Erkenntnisse über die Fähigkeit der Darmbakterien zur Verwertung von Sulfonaten liefern.show moreshow less

Download full text files

  • SHA-512:fc46b660bbcea0dc2eae7b02a7e1de30183b09e7d6bab87323794c134f13b9e7a63101414304a6e9e6d8029ed0380965d41c4ed013af1862917b194180a406e7

Export metadata

Metadaten
Author details:Theresa RauschORCiDGND
URN:urn:nbn:de:kobv:517-opus4-574036
DOI:https://doi.org/10.25932/publishup-57403
translated title (German):Die Rolle von Darmbakterien bei der Umsetzung von Nahrungsmittel-Sulfonaten
Reviewer(s):Karl-Herbert SchäferORCiDGND
Supervisor(s):Michael Blaut, Burkhard Kleuser, Annett Braune
Publication type:Doctoral Thesis
Language:English
Publication year:2023
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2022/12/01
Release date:2023/02/08
Tag:Bilophila wadsworthia; Mikrobiologie; Nahrungssulfonate; Sulfid; intestinal
Bilophila wadsworthia; dietary sulfonates; intestinal; microbiology; sulfide
Number of pages:XXI, 98, LXIV
RVK - Regensburg classification:WX 1605
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.