• search hit 4 of 5
Back to Result List

Metal binding by humic substances : characterization by high-resolution-lanthanide-ion-probe-spectroscopy (HR- LIPS)

  • In ultra-low-temperature experiments at 4.7 K the luminescence of Eu(III) bound to different hydroxy- and methoxybenzoic acids and to humic substances (HS) was investigated. The benzoic acid derivatives were used as simple model compounds for common metal-binding structures in HS. The Eu(III) luminescence was directly excited by means of a pulsed dye laser, scanning through the D-5(0) -> F-7(0) transition of Eu(III) and subsequently, high-resolution total luminescence spectra (TLS) were recorded. Based on the thorough analysis of the high-resolution TLS conclusions were drawn with respect to the number of different complexes formed and to the symmetry of the complexes. The crystal-field strength parameter N-nu(B-2q) was dependent on the electrostatic forces induced by the ligands as well as on the symmetry of the complexes. The formation of thermodynamically stable complexes was found to be slow even for small model ligands such its 2-hydroxybenzoic acid. Comparison between the model compounds and HS clearly revealed that theIn ultra-low-temperature experiments at 4.7 K the luminescence of Eu(III) bound to different hydroxy- and methoxybenzoic acids and to humic substances (HS) was investigated. The benzoic acid derivatives were used as simple model compounds for common metal-binding structures in HS. The Eu(III) luminescence was directly excited by means of a pulsed dye laser, scanning through the D-5(0) -> F-7(0) transition of Eu(III) and subsequently, high-resolution total luminescence spectra (TLS) were recorded. Based on the thorough analysis of the high-resolution TLS conclusions were drawn with respect to the number of different complexes formed and to the symmetry of the complexes. The crystal-field strength parameter N-nu(B-2q) was dependent on the electrostatic forces induced by the ligands as well as on the symmetry of the complexes. The formation of thermodynamically stable complexes was found to be slow even for small model ligands such its 2-hydroxybenzoic acid. Comparison between the model compounds and HS clearly revealed that the carboxylate group is the dominant binding site in HS. Indices for the formation of chelates, e.g. similar to 2- hydroxybenzoic acid, were not found for HS.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Bettina Marmodée, Joost de Klerk, Freek Ariese, Cees Gooijer, Michael Uwe KumkeORCiDGND
URL:http://www.znaturforsch.com/a.htm
ISSN:0932-0784
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Zeitschrift für Naturforschung A. - ISSN 0932-0784. - 64a (2009), 3-4, S. 242 - 250
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.