• Treffer 2 von 6
Zurück zur Trefferliste

Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains

  • This study presents an application of an innovative sampling strategy to assess soil moisture dynamics in a headwater of the Weißeritz in the German eastern Ore Mountains. A grassland site and a forested site were instrumented with two Spatial TDR clusters (STDR) that consist of 39 and 32 coated TDR probes of 60 cm length. Distributed time series of vertically averaged soil moisture data from both sites/ensembles were analyzed by statistical and geostatistical methods. Spatial variability and the spatial mean at the forested site were larger than at the grassland site. Furthermore, clustering of TDR probes in combination with long-term monitoring allowed identification of average spatial covariance structures at the small field scale for different wetness states. The correlation length of soil water content as well as the sill to nugget ratio at the grassland site increased with increasing average wetness and but, in contrast, were constant at the forested site. As soil properties at both the forested and grassland sites are extremelyThis study presents an application of an innovative sampling strategy to assess soil moisture dynamics in a headwater of the Weißeritz in the German eastern Ore Mountains. A grassland site and a forested site were instrumented with two Spatial TDR clusters (STDR) that consist of 39 and 32 coated TDR probes of 60 cm length. Distributed time series of vertically averaged soil moisture data from both sites/ensembles were analyzed by statistical and geostatistical methods. Spatial variability and the spatial mean at the forested site were larger than at the grassland site. Furthermore, clustering of TDR probes in combination with long-term monitoring allowed identification of average spatial covariance structures at the small field scale for different wetness states. The correlation length of soil water content as well as the sill to nugget ratio at the grassland site increased with increasing average wetness and but, in contrast, were constant at the forested site. As soil properties at both the forested and grassland sites are extremely variable, this suggests that the correlation structure at the forested site is dominated by the pattern of throughfall and interception. We also found a strong correlation between average soil moisture dynamics and runoff coefficients of rainfall-runoff events observed at gauge Rehefeld, which explains almost as much variability in the runoff coefficients as pre-event discharge. By combining these results with a recession analysis we derived a first conceptual model of the dominant runoff mechanisms operating in this catchment. Finally, long term simulations with a physically based hydrological model were in good/acceptable accordance with the time series of spatial average soil water content observed at the forested site and the grassland site, respectively. Both simulations used a homogeneous soil setup that closely reproduces observed average soil conditions observed at the field sites. This corroborates the proposed sampling strategy of clustering TDR probes in typical functional units is a promising technique to explore the soil moisture control on runoff generation. Long term monitoring of such sites could maybe yield valuable information for flood warning. The sampling strategy helps furthermore to unravel different types of soil moisture variability.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Erwin Zehe, Thomas GräffORCiD, Markus Morgner, Andreas Bauer, Axel BronstertORCiDGND
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2008
Erscheinungsjahr:2008
Datum der Freischaltung:25.03.2017
Quelle:Hydrology and earth system sciences discuss. - 6 (2009) S. 7503 - 7537
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
Name der Einrichtung zum Zeitpunkt der Publikation:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geographie und Geoökologie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geoökologie
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.