• Treffer 1 von 1
Zurück zur Trefferliste

Radiative transfer lattice Boltzmann methods

  • The numerical prediction of radiative transport is a challenging task due to the complexity of the radiative transport equation. We apply the lattice Boltzmann method (LBM), originally developed for fluid flow problems, to solve the radiative transport in volume. One model (meso RTLBM) is derived directly from a discretization of the radiative transport equation, yielding in a precise but numerical costly scheme. The second model (macro RTLBM) solves the Helmholtz equation, which is a proper approximation for highly scattering volumes. Both numerical algorithms are validated against Monte-Carlo data for a set of 35 optical parameters, which correspond to radiative transport ranging from ballistic to diffuse regimes. Together with a set of four benchmark simulations, the comprehensive validation concludes the overall quality and detects asymptotic trends for radiative transport LBM. Furthermore, an accuracy map is presented, which summarizes the error for all parameters. This graph allows to determine the validity range for bothThe numerical prediction of radiative transport is a challenging task due to the complexity of the radiative transport equation. We apply the lattice Boltzmann method (LBM), originally developed for fluid flow problems, to solve the radiative transport in volume. One model (meso RTLBM) is derived directly from a discretization of the radiative transport equation, yielding in a precise but numerical costly scheme. The second model (macro RTLBM) solves the Helmholtz equation, which is a proper approximation for highly scattering volumes. Both numerical algorithms are validated against Monte-Carlo data for a set of 35 optical parameters, which correspond to radiative transport ranging from ballistic to diffuse regimes. Together with a set of four benchmark simulations, the comprehensive validation concludes the overall quality and detects asymptotic trends for radiative transport LBM. Furthermore, an accuracy map is presented, which summarizes the error for all parameters. This graph allows to determine the validity range for both radiative transport LBM at a glance. Finally, comprehensive guidelines are formulated to facilitate the choice of the radiative transport LBM model.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Albert Mink, Christopher McHardyORCiD, Lena BresselORCiDGND, Cornelia RauhORCiD, Mathias J. KrauseORCiD
DOI:https://doi.org/10.1016/j.jqsrt.2019.106810
ISSN:0022-4073
ISSN:1879-1352
Titel des übergeordneten Werks (Englisch):Journal of quantitative spectroscopy & radiative transfer
Untertitel (Englisch):3D models and their performance in different regimes of radiative transfer
Verlag:Pergamon Press
Verlagsort:Oxford
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:20.12.2019
Erscheinungsjahr:2019
Datum der Freischaltung:10.10.2023
Freies Schlagwort / Tag:Analysis scattering kernel; Lattice Boltzmann methods; Monte-Carlo; Optical parameter set; Radiative transport
Band:243
Aufsatznummer:106810
Fördernde Institution:Ministry of Science, Research and the Arts Baden-Wurttemberg; DFG; ("Deutsche Forschungsgemeinschaft") German Research Foundation (DFG)
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.