• search hit 1 of 22
Back to Result List

Altered hydrological and sediment dynamics in high-alpine areas – Exploring the potential of machine-learning for estimating past and future changes

  • Climate change fundamentally transforms glaciated high-alpine regions, with well-known cryospheric and hydrological implications, such as accelerating glacier retreat, transiently increased runoff, longer snow-free periods and more frequent and intense summer rainstorms. These changes affect the availability and transport of sediments in high alpine areas by altering the interaction and intensity of different erosion processes and catchment properties. Gaining insight into the future alterations in suspended sediment transport by high alpine streams is crucial, given its wide-ranging implications, e.g. for flood damage potential, flood hazard in downstream river reaches, hydropower production, riverine ecology and water quality. However, the current understanding of how climate change will impact suspended sediment dynamics in these high alpine regions is limited. For one, this is due to the scarcity of measurement time series that are long enough to e.g. infer trends. On the other hand, it is difficult – if not impossible – toClimate change fundamentally transforms glaciated high-alpine regions, with well-known cryospheric and hydrological implications, such as accelerating glacier retreat, transiently increased runoff, longer snow-free periods and more frequent and intense summer rainstorms. These changes affect the availability and transport of sediments in high alpine areas by altering the interaction and intensity of different erosion processes and catchment properties. Gaining insight into the future alterations in suspended sediment transport by high alpine streams is crucial, given its wide-ranging implications, e.g. for flood damage potential, flood hazard in downstream river reaches, hydropower production, riverine ecology and water quality. However, the current understanding of how climate change will impact suspended sediment dynamics in these high alpine regions is limited. For one, this is due to the scarcity of measurement time series that are long enough to e.g. infer trends. On the other hand, it is difficult – if not impossible – to develop process-based models, due to the complexity and multitude of processes involved in high alpine sediment dynamics. Therefore, knowledge has so far been confined to conceptual models (which do not facilitate deriving concrete timings or magnitudes for individual catchments) or qualitative estimates (‘higher export in warmer years’) that may not be able to capture decreases in sediment export. Recently, machine-learning approaches have gained in popularity for modeling sediment dynamics, since their black box nature tailors them to the problem at hand, i.e. relatively well-understood input and output data, linked by very complex processes. Therefore, the overarching aim of this thesis is to estimate sediment export from the high alpine Ötztal valley in Tyrol, Austria, over decadal timescales in the past and future – i.e. timescales relevant to anthropogenic climate change. This is achieved by informing, extending, evaluating and applying a quantile regression forest (QRF) approach, i.e. a nonparametric, multivariate machine-learning technique based on random forest. The first study included in this thesis aimed to understand present sediment dynamics, i.e. in the period with available measurements (up to 15 years). To inform the modeling setup for the two subsequent studies, this study identified the most important predictors, areas within the catchments and time periods. To that end, water and sediment yields from three nested gauges in the upper Ötztal, Vent, Sölden and Tumpen (98 to almost 800 km² catchment area, 930 to 3772 m a.s.l.) were analyzed for their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. The findings suggest that the areas situated above 2500 m a.s.l., containing glacier tongues and recently deglaciated areas, play a pivotal role in sediment generation across all sub-catchments. In contrast, precipitation events were relatively unimportant (on average, 21 % of annual sediment yield was associated to precipitation events). Thus, the second and third study focused on the Vent catchment and its sub-catchment above gauge Vernagt (11.4 and 98 km², 1891 to 3772 m a.s.l.), due to their higher share of areas above 2500 m. Additionally, they included discharge, precipitation and air temperature (as well as their antecedent conditions) as predictors. The second study aimed to estimate sediment export since the 1960s/70s at gauges Vent and Vernagt. This was facilitated by the availability of long records of the predictors, discharge, precipitation and air temperature, and shorter records (four and 15 years) of turbidity-derived sediment concentrations at the two gauges. The third study aimed to estimate future sediment export until 2100, by applying the QRF models developed in the second study to pre-existing precipitation and temperature projections (EURO-CORDEX) and discharge projections (physically-based hydroclimatological and snow model AMUNDSEN) for the three representative concentration pathways RCP2.6, RCP4.5 and RCP8.5. The combined results of the second and third study show overall increasing sediment export in the past and decreasing export in the future. This suggests that peak sediment is underway or has already passed – unless precipitation changes unfold differently than represented in the projections or changes in the catchment erodibility prevail and override these trends. Despite the overall future decrease, very high sediment export is possible in response to precipitation events. This two-fold development has important implications for managing sediment, flood hazard and riverine ecology. This thesis shows that QRF can be a very useful tool to model sediment export in high-alpine areas. Several validations in the second study showed good performance of QRF and its superiority to traditional sediment rating curves – especially in periods that contained high sediment export events, which points to its ability to deal with threshold effects. A technical limitation of QRF is the inability to extrapolate beyond the range of values represented in the training data. We assessed the number and severity of such out-of-observation-range (OOOR) days in both studies, which showed that there were few OOOR days in the second study and that uncertainties associated with OOOR days were small before 2070 in the third study. As the pre-processed data and model code have been made publically available, future studies can easily test further approaches or apply QRF to further catchments.show moreshow less
  • Der Klimawandel verändert vergletscherte Hochgebirgsregionen grundlegend, mit wohlbekannten Auswirkungen auf Kryosphäre und Hydrologie, wie beschleunigtem Gletscherrückgang, vorübergehend erhöhtem Abfluss, längeren schneefreien Perioden und häufigeren und intensiveren sommerlichen Starkniederschlägen. Diese Veränderungen wirken sich auf die Verfügbarkeit und den Transport von Sedimenten in hochalpinen Gebieten aus, indem sie die Interaktion und Intensität verschiedener Erosionsprozesse und Einzugsgebietseigenschaften verändern. Eine Abschätzung der zukünftigen Veränderungen des Schwebstofftransports in hochalpinen Bächen ist von entscheidender Bedeutung, da sie weitreichende Auswirkungen haben, z. B. auf das Hochwasserschadenspotenzial, die Hochwassergefahr in den Unterläufen, sowie Wasserkraftproduktion, aquatische Ökosysteme und Wasserqualität. Das derzeitige Verständnis der Auswirkungen des Klimawandels auf die Schwebstoffdynamik in diesen hochalpinen Regionen ist jedoch begrenzt. Dies liegt zum einen daran, dass es kaumDer Klimawandel verändert vergletscherte Hochgebirgsregionen grundlegend, mit wohlbekannten Auswirkungen auf Kryosphäre und Hydrologie, wie beschleunigtem Gletscherrückgang, vorübergehend erhöhtem Abfluss, längeren schneefreien Perioden und häufigeren und intensiveren sommerlichen Starkniederschlägen. Diese Veränderungen wirken sich auf die Verfügbarkeit und den Transport von Sedimenten in hochalpinen Gebieten aus, indem sie die Interaktion und Intensität verschiedener Erosionsprozesse und Einzugsgebietseigenschaften verändern. Eine Abschätzung der zukünftigen Veränderungen des Schwebstofftransports in hochalpinen Bächen ist von entscheidender Bedeutung, da sie weitreichende Auswirkungen haben, z. B. auf das Hochwasserschadenspotenzial, die Hochwassergefahr in den Unterläufen, sowie Wasserkraftproduktion, aquatische Ökosysteme und Wasserqualität. Das derzeitige Verständnis der Auswirkungen des Klimawandels auf die Schwebstoffdynamik in diesen hochalpinen Regionen ist jedoch begrenzt. Dies liegt zum einen daran, dass es kaum ausreichend lange Messzeitreihen gibt, um z.B. Trends ableiten zu können. Zum anderen ist es aufgrund der Komplexität und der Vielzahl der Prozesse, die an der hochalpinen Sedimentdynamik beteiligt sind, schwierig - wenn nicht gar unmöglich - prozessbasierte Modelle zu entwickeln. Daher beschränkte sich das Wissen bisher auf konzeptionelle Modelle (die es nicht ermöglichen, konkrete Zeitpunkte oder Größenordnungen für einzelne Einzugsgebiete abzuleiten) oder qualitative Schätzungen ("höherer Sedimentaustrag in wärmeren Jahren"), die möglicherweise nicht in der Lage sind, Rückgänge im Sedimentaustrag abzubilden. In jüngster Zeit haben Ansätze des maschinellen Lernens für die Modellierung der Sedimentdynamik an Popularität gewonnen, da sie aufgrund ihres Black-Box-Charakters auf das vorliegende Problem zugeschnitten sind, d. h. auf relativ gut verstandene Eingangs- und Ausgangsdaten, die durch sehr komplexe Prozesse verknüpft sind. Das übergeordnete Ziel dieser Arbeit ist daher die Abschätzung des Sedimentaustrags am Beispiel des hochalpinen Ötztals in Tirol, Österreich, auf dekadischen Zeitskalen in der Vergangenheit und Zukunft – also Zeitskalen, die für den anthropogenen Klimawandel relevant sind. Dazu wird ein Quantile Regression Forest (QRF)-Ansatz, d.h. ein nichtparametrisches, multivariates maschinelles Lernverfahren auf der Basis von Random Forest, erweitert, evaluiert und angewendet. Die erste Studie im Rahmen dieser Arbeit zielte darauf ab, die "gegenwärtige" Sedimentdynamik zu verstehen, d. h. in dem Zeitraum, für den Messungen vorliegen (bis zu 15 Jahre). Um die Modellierung für die beiden folgenden Studien zu ermöglichen, wurden in dieser Studie die wichtigsten Prädiktoren, Teilgebiete des Untersuchungsgebiets und Zeiträume ermittelt. Zu diesem Zweck wurden die Wasser- und Sedimenterträge von drei verschachtelten Pegeln im oberen Ötztal, Vent, Sölden und Tumpen (98 bis fast 800 km² Einzugsgebiet, 930 bis 3772 m ü.d.M.), auf ihre räumliche Verteilung, ihre Saisonalität und deren räumlichen Unterschiede, sowie die relative Bedeutung von Niederschlagsereignissen hin untersucht. Die Ergebnisse deuten darauf hin, dass die Gebiete oberhalb von 2500 m ü. M., in denen sich Gletscherzungen und kürzlich entgletscherte Gebiete befinden, eine zentrale Rolle in der Sedimentdynamik in allen Teileinzugsgebieten spielen. Im Gegensatz dazu waren Niederschlagsereignisse relativ unbedeutend (im Durchschnitt wurden 21 % des jährlichen Austrags mit Niederschlagsereignissen in Verbindung gebracht). Daher konzentrierten sich die zweite und dritte Studie auf das Vent-Einzugsgebiet und sein Teileinzugsgebiet oberhalb des Pegels Vernagt (11,4 und 98 km², 1891 bis 3772 m ü. M.), da sie einen höheren Anteil an Gebieten oberhalb von 2500 m aufweisen. Außerdem wurden Abfluss, Niederschlag und Lufttemperatur (sowie deren Vorbedingungen) als Prädiktoren einbezogen. Die zweite Studie zielte darauf ab, den Sedimentexport seit den 1960er/70er Jahren an den Pegeln Vent und Vernagt abzuschätzen. Dies wurde durch die Verfügbarkeit langer Aufzeichnungen der Prädiktoren Abfluss, Niederschlag und Lufttemperatur sowie kürzerer Aufzeichnungen (vier und 15 Jahre) von aus Trübungsmessungen abgeleiteten Sedimentkonzentrationen an den beiden Pegeln ermöglicht. Die dritte Studie zielte darauf ab, den zukünftigen Sedimentexport bis zum Jahr 2100 abzuschätzen, indem die in der zweiten Studie entwickelten QRF-Modelle auf bereits existierende Niederschlags- und Temperaturprojektionen (EURO-CORDEX) und Abflussprojektionen (des physikalisch basierten hydroklimatologischen und Schneemodells AMUNDSEN) in den drei repräsentativen Konzentrationspfaden RCP2.6, RCP4.5 und RCP8.5 angewendet wurden. Die kombinierten Ergebnisse der zweiten und dritten Studie legen nahe, dass der Sedimentexport in der Vergangenheit insgesamt zugenommen hat und in der Zukunft abnehmen wird. Dies deutet darauf hin, dass der Höhepunkt des Sedimenteintrags erreicht ist oder bereits überschritten wurde - es sei denn, die Niederschlagsveränderungen entwickeln sich anders, als es in den Projektionen dargestellt ist, oder Veränderungen in der Erodierbarkeit des Einzugsgebiets setzen sich durch. Trotz des allgemeinen Rückgangs in der Zukunft sind sehr hohe Sedimentausträge als Reaktion auf Niederschlagsereignisse möglich. Diese zweifältige Entwicklung hat wichtige Auswirkungen auf das Sedimentmanagement, die Hochwassergefahr und die Flussökologie. Diese Arbeit zeigt, dass QRF ein sehr nützliches Instrument zur Modellierung des Sedimentexports in hochalpinen Gebieten sein kann. Mehrere Validierungen in der zweiten Studie zeigten eine gute Modell-Performance und die Überlegenheit gegenüber traditionellen Sediment-Abfluss-Beziehungen – insbesondere in Zeiträumen, in denen es zu einem hohen Sedimentexport kam, was auf die Fähigkeit von QRF hinweist, mit Schwelleneffekten umzugehen. Eine technische Einschränkung von QRF ist die Unfähigkeit, über den Bereich der in den Trainingsdaten dargestellten Werte hinaus zu extrapolieren. Die Anzahl und den Schweregrad an solchen Tagen, in denen der Wertebereich der Trainingsdaten überschritten wurde, wurde in beiden Studien untersucht. Dabei zeigte sich, dass es in der zweiten Studie nur wenige solcher Tage gab und dass die mit den Überschreitungen verbundenen Unsicherheiten in der dritten Studie vor 2070 gering waren. Da die vorverarbeiteten Daten und der Modellcode öffentlich zugänglich gemacht wurden, können künftige Studien darauf aufbauend weitere Ansätze testen oder QRF auf weitere Einzugsgebiete anwenden.show moreshow less

Download full text files

  • SHA-512:bdd2d519b0bb0268214f6ef01461ecbf9a5e8b39c24aa7162aef0ed59ffd422975d561975090c0c40641c7339aba5080f8f23d68e9573847633e9e4b8cf36046

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Lena Katharina SchmidtORCiDGND
URN:urn:nbn:de:kobv:517-opus4-623302
DOI:https://doi.org/10.25932/publishup-62330
Reviewer(s):Axel BronstertORCiDGND, Theresa BlumeORCiDGND, Tobias HeckmannORCiDGND
Supervisor(s):Axel Bronstert, Stefan Achleitner
Publication type:Doctoral Thesis
Language:English
Publication year:2024
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2023/12/12
Release date:2024/02/06
Tag:Geomorphologie; Gletscherschmelze; Hydrologie; Klimawandel; Naturgefahren; suspendiertes Sediment
climate change; geomorphology; glacier melt; hydrology; natural hazards; suspended sediment
Number of pages:xxi, 129
RVK - Regensburg classification:RK 65357, RK 65387
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.