• search hit 5 of 8
Back to Result List

Secular evolution in galaxies

Säkulare Evolution in Galaxien

  • Galaxies are gravitationally bound systems of stars, gas, dust and - probably - dark matter. They are the building blocks of the Universe. The morphology of galaxies is diverse: some galaxies have structures such as spirals, bulges, bars, rings, lenses or inner disks, among others. The main processes that characterise galaxy evolution can be separated into fast violent events that dominated evolution at earlier times and slower processes, which constitute a phase called secular evolution, that became dominant at later times. Internal processes of secular evolution include the gradual rearrangement of matter and angular momentum, the build-up and dissolution of substructures or the feeding of supermassive black holes and their feedback. Galaxy bulges – bright central components in disc galaxies –, on one hand, are relics of galaxy formation and evolution. For instance, the presence of a classical bulge suggests a relatively violent history. In contrast, the presence of a disc-like bulge instead indicates the occurrence of secularGalaxies are gravitationally bound systems of stars, gas, dust and - probably - dark matter. They are the building blocks of the Universe. The morphology of galaxies is diverse: some galaxies have structures such as spirals, bulges, bars, rings, lenses or inner disks, among others. The main processes that characterise galaxy evolution can be separated into fast violent events that dominated evolution at earlier times and slower processes, which constitute a phase called secular evolution, that became dominant at later times. Internal processes of secular evolution include the gradual rearrangement of matter and angular momentum, the build-up and dissolution of substructures or the feeding of supermassive black holes and their feedback. Galaxy bulges – bright central components in disc galaxies –, on one hand, are relics of galaxy formation and evolution. For instance, the presence of a classical bulge suggests a relatively violent history. In contrast, the presence of a disc-like bulge instead indicates the occurrence of secular evolution processes in the main disc. Galaxy bars – elongated central stellar structures –, on the other hand, are the engines of secular evolution. Studying internal properties of both bars and bulges is key to comprehending some of the processes through which secular evolution takes place. The main objectives of this thesis are (1) to improve the classification of bulges by combining photometric and spectroscopic approaches for a large sample of galaxies, (2) to quantify star formation in bars and verify dependencies on galaxy properties and (3) to analyse stellar populations in bars to aid in understanding the formation and evolution of bars. Integral field spectroscopy is fundamental to the work presented in this thesis, which consists of three different projects as part of three different galaxy surveys: the CALIFA survey, the CARS survey and the TIMER project. The first part of this thesis constitutes an investigation of the nature of bulges in disc galaxies. We analyse 45 galaxies from the integral-field spectroscopic survey CALIFA by performing 2D image decompositions, growth curve measurements and spectral template fitting to derive stellar kinematics from CALIFA data cubes. From the obtained results, we present a recipe to classify bulges that combines four different parameters from photometry and kinematics: The bulge Sersic index nb, the concentration index C20;50, the Kormendy relation and the inner slope of the radial velocity dispersion profile ∇σ. The results of the different approaches are in good agreement and allow a safe classification for approximately 95% of the galaxies. We also find that our new ‘inner’ concentration index performs considerably better than the traditionally used C50;90 and, in combination with the Kormendy relation, provides a very robust indication of the physical nature of the bulge. In the second part, we study star formation within bars using VLT/MUSE observations for 16 nearby (0.01 < z < 0.06) barred active-galactic-nuclei (AGN)-host galaxies from the CARS survey. We derive spatially-resolved star formation rates (SFR) from Hα emission line fluxes and perform a detailed multi-component photometric decomposition on images derived from the data cubes. We find a clear separation into eight star-forming (SF) and eight non-SF bars, which we interpret as indication of a fast quenching process. We further report a correlation between the SFR in the bar and the shape of the bar surface brightness profile: only the flattest bars (nbar < 0.4) are SF. Both parameters are found to be uncorrelated with Hubble type. Additionally, owing to the high spatial resolution of the MUSE data cubes, for the first time, we are able to dissect the SFR within the bar and analyse trends parallel and perpendicular to the bar major axis. Star formation is 1.75 times stronger on the leading edge of a rotating bar than on the trailing edge and is radially decreasing. Moreover, from testing an AGN feeding scenario, we report that the SFR of the bar is uncorrelated with AGN luminosity. Lastly, we present a detailed analysis of star formation histories and chemical enrichment of stellar populations (SP) in galaxy bars. We use MUSE observations of nine very nearby barred galaxies from the TIMER project to derive spatially resolved maps of stellar ages and metallicities, [α/Fe] abundances, star formation histories, as well as Hα as tracer of star formation. Using these maps, we explore in detail variations of SP perpendicular to the bar major axes. We find observational evidence for a separation of SP, supposedly caused by an evolving bar. Specifically, intermediate-age stars (∼ 2-6 Gyr) get trapped on more elongated orbits forming a thinner bar, while old stars (> 8 Gyr) form a rounder and thicker bar. This evidence is further strengthened by very similar results obtained from barred galaxies in the cosmological zoom-in simulations from the Auriga project. In addition, we find imprints of typical star formation patterns in barred galaxies on the youngest populations (< 2 Gyr), which continuously become more dominant from the major axis towards the sides of the bar. The effect is slightly stronger on the leading side. Furthermore, we find that bars are on average more metal-rich and less α-enhanced than the inner parts of the discs that surrounds them. We interpret this result as an indication of a more prolonged or continuous formation of stars that shape the bar as compared to shorter formation episodes in the disc within the bar region.show moreshow less
  • Galaxien sind gravitativ gebundene Systeme aus Sternen, Gas, Staub und - wahrscheinlich - dunkler Materie. Sie sind die Bausteine des Universums. Die Morphologie von Galaxien ist vielfältig: Einige Galaxien haben Strukturen wie zum Beispiel Spirale, Bulges, Balken, Ringe, Linsen oder innere Scheiben. Die Hauptprozesse, die die Entwicklung von Galaxien charakterisieren, können unterteilt werden in schnelle, heftige Prozesse, die zu früheren Zeiten die Evolution beherrschten, und langsamere Prozesse, die eine Phase bilden, die als säkulare Evolution (secular evolution) bezeichnet wird, die zur jetzigen Zeit dominiert. Interne Prozesse der säkularen Evolution sind zum Beispiel die schrittweise Umverteilung von Materie und Drehimpuls, der Auf- und Abbau von Substrukturen oder der Materiezufluss zu supermassereichen Schwarzen Löchern und ihr Feedback. Bulges – helle zentrale Komponenten in Scheibengalaxien –, auf der einen Seite, sind Relikte der Entstehung und Entwicklung von Galaxien. Zum Beispiel, lässt das Vorhandensein einesGalaxien sind gravitativ gebundene Systeme aus Sternen, Gas, Staub und - wahrscheinlich - dunkler Materie. Sie sind die Bausteine des Universums. Die Morphologie von Galaxien ist vielfältig: Einige Galaxien haben Strukturen wie zum Beispiel Spirale, Bulges, Balken, Ringe, Linsen oder innere Scheiben. Die Hauptprozesse, die die Entwicklung von Galaxien charakterisieren, können unterteilt werden in schnelle, heftige Prozesse, die zu früheren Zeiten die Evolution beherrschten, und langsamere Prozesse, die eine Phase bilden, die als säkulare Evolution (secular evolution) bezeichnet wird, die zur jetzigen Zeit dominiert. Interne Prozesse der säkularen Evolution sind zum Beispiel die schrittweise Umverteilung von Materie und Drehimpuls, der Auf- und Abbau von Substrukturen oder der Materiezufluss zu supermassereichen Schwarzen Löchern und ihr Feedback. Bulges – helle zentrale Komponenten in Scheibengalaxien –, auf der einen Seite, sind Relikte der Entstehung und Entwicklung von Galaxien. Zum Beispiel, lässt das Vorhandensein eines klassischen Bulges auf eine relativ heftige Entwicklung schließen. Im Gegensatz dazu, weist das Vorhandensein eines scheibenähnlichen Bulges auf das Auftreten von säkularen Evolutionsprozessen in der Hauptscheibe der Galaxie hin. Galaxienbalken (galaxy bars) - längliche zentrale Sternstrukturen - sind dagegen die Motoren der säkularen Evolution. Eine Untersuchung der Eigenschaften von Balken und Bulges ist der Schlüssel um die Hauptprozesse der säkularen Evolution zu verstehen. Die Hauptziele dieser Arbeit sind (1) das Verbessern der Klassifikation von Bulges durch Kombination von photometrischen und spektroskopischen Ansätzen für eine große Anzahl von Galaxien, (2) das Quantifizieren der Sternentstehung in Balken im Verhältnis zu den Eigenschaften von deren Galaxien und (3) das Analysieren der Sternpopulationen in Balken, um das Verständnis der Entstehung und Entwicklung von Balken zu erweitern. Integrale Feldspektroskopie (integral field spectroscopy) ist grundlegend für die vorliegende Arbeit, die aus drei verschiedenen Projekten besteht. Sie wurde im Rahmen von drei verschiedenen Galaxien Surveys – Durchmusterungen von Galaxien – angefertigt: der CALIFA-Survey, der CARS-Survey und das TIMER-Projekt. Der erste Teil dieser Arbeit befasst sich mit der Charakterisierung von Bulgetypen in Scheibengalaxien. Wir analysieren 45 Galaxien vom CALIFA-Survey unter Benutzung von photometrischer und spektroskopischer Methoden um Eigenschaften von Struktur und Kinematik der Bulges zu identifizieren. Basierend auf den Resultaten präsentieren wir ein Rezept zur Klassifizierung von Bulges, das vier verschiedene Parameter aus Photometrie und Kinematik kombiniert: Der Bulge-Sersic-Index, ein Konzentrationsindex, die Kormendy-Relation und die innere Steigung des Radialdispersionsgeschwindigkeitsprofils. Die Ergebnisse der verschiedenen Ansätze stimmen gut überein und erlauben eine sichere Klassifizierung von ungefähr 95% der Galaxien. Im zweiten Teil untersuchen wir die Sternentstehung in Balken mithilfe von VLT/MUSE-Beobachtungen für 16 nahegelegende Balkengalaxien mit aktiven Kernen (engl. AGN) vom CARS-Survey. Wir berechnen ortsaufgelöste Sternentstehungsraten (engl. SFR) aus Hα Emissionslinienflüssen und führen eine detaillierte Mehrkomponentenanalyse durch photometrische Zerlegung der Galaxien durch. Wir finden eine klare Trennung in acht sternbildende und acht nicht-sternbildende Balken, die wir als Indiz auf ein schnelles Erlöschen von Sternentstehung interpretieren. Des Weiteren, finden wir eine Korrelation zwischen der SFR im Balken und des Helligkeitsprofils des Balkens: Nur die flachsten Balken bilden Sterne. Aufgrund der hohen räumlichen Auflösung von MUSE ist es uns erstmals möglich, die SFR innerhalb des Balkens zu zerlegen und Trends parallel und senkrecht zur Balken-Hauptachse zu analysieren. Die Sternentstehung an der Vorderkante des rotierenden Balkens ist 1,75-mal stärker als an der Hinterkante und nimmt radial ab. Darüber hinaus berichten wir, dass die SFR in Balken nicht mit der AGN Leuchtkraft korelliert. Schließlich, präsentieren wir eine detaillierte Analyse der Sternentstehungsgeschichte und der chemischen Anreicherung von Sternpopulationen (SP) in Galaxienbalken. Wir verwenden MUSE-Beobachtungen von neun nahgelegene Galaxien aus dem TIMER-Projekt und berechnen ortsaufgelöste Karten von Sternenalter und Metallizitäten, [α/Fe]-Häufigkeiten, Sternentstehungsgeschichten sowie Sternentstehung. Anhand dieser Karten untersuchen wir im Detail Variationen von SP in Balken. Wir finden Hinweise für eine Trennung von SP, vermutlich verursacht durch die Präsenz des Balkens. Sterne mittleren Alters bilden einen länglichen dünnen Balken, während alte Sterne einen runderen und dickeren Balken bilden. Diese Beobachtung wird darüberhinaus über ähnliche Resultate in den kosmologischen zoom-in Simulationen des Auriga-Projekts verstärkt. Außerdem finden wir Tendenzen in den jüngsten Populationen, die auf eine kürzliche erfolte oder noch andauernde Sternentstehung entlang der Kanten der Balken hindeuten, mit einem leichten Übergewicht entlang der Vorderkante. Schließlich, finden wir Indiz für eine länger anhaltende oder kontinuierliche Formation von Sternen im Balken verglichen mit kürzeren Formationsepisoden in der Scheibe innerhalb des Balkenradius.show moreshow less

Download full text files

  • SHA-512:65ae5e344e0339500dbe743c579699d44ecddb06a70b3508554b12fcec3e90645896cba6571b8f8f6a8f5b531f9063b35ccc2266d7d769174f6c7d7a39e96eda

Export metadata

Metadaten
Author details:Justus NeumannORCiD
URN:urn:nbn:de:kobv:517-opus4-482701
DOI:https://doi.org/10.25932/publishup-48270
Subtitle (English):properties of bars and bulges as seen with integral field spectroscopy
Subtitle (German):Eigenschaften von Balken und Bulges aus Sicht der integralen Feldspektroskopie
Reviewer(s):Lutz WisotzkiORCiDGND, Dimitri GadottiORCiD, Johan KnapenORCiD
Supervisor(s):Dimitri Gadotti, Lutz Wisotzki, Matthias Steinmetz
Publication type:Doctoral Thesis
Language:English
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/10/23
Release date:2020/12/15
Tag:Galaxien; Galaxienbalken; Galaxienbulges; Galaxienentwicklung; Galaxienstruktur; Integrale Feldspektroskopie; Sternenpopulationen
galaxies; galaxy bars; galaxy bulges; galaxy evolution; galaxy structure; integral field spectroscopy; stellar populations
Number of pages:viii, 97
RVK - Regensburg classification:US 3100
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
MSC classification:85-XX ASTRONOMY AND ASTROPHYSICS (For celestial mechanics, see 70F15) / 85Axx Astronomy and astrophysics (For celestial mechanics, see 70F15) / 85A04 General
License (German):License LogoCC-BY-NC-SA - Namensnennung, nicht kommerziell, Weitergabe zu gleichen Bedingungen 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.