• search hit 2 of 52
Back to Result List

Multifunctionality in polymer networks by dynamic of coordination bonds

  • The need for multifunctional materials is driven by emerging technologies and innovations, such as in the field of soft robotics and tactile or haptic systems, where minimizing the number of operational components is not only desirable, but can also be essential for realizing such devices. This study report on designing a multifunctional soft polymer material that can address a number of operating requirements such as solvent resistance, reshaping ability, self-healing capability, fluorescence stimuli-responsivity, and anisotropic structural functions. The numerous functional abilities are associated to rhodium(I)-phosphine coordination bonds, which in a polymer network act with their dynamic and non-covalently bonded nature as multifunctional crosslinks. Reversible aggregation of coordination bonds leads to changes in fluorescence emission intensity that responds to chemical or mechanical stimuli. The fast dynamics and diffusion of rhodium-phosphine ions across and through contacting areas of the material provide for reshaping andThe need for multifunctional materials is driven by emerging technologies and innovations, such as in the field of soft robotics and tactile or haptic systems, where minimizing the number of operational components is not only desirable, but can also be essential for realizing such devices. This study report on designing a multifunctional soft polymer material that can address a number of operating requirements such as solvent resistance, reshaping ability, self-healing capability, fluorescence stimuli-responsivity, and anisotropic structural functions. The numerous functional abilities are associated to rhodium(I)-phosphine coordination bonds, which in a polymer network act with their dynamic and non-covalently bonded nature as multifunctional crosslinks. Reversible aggregation of coordination bonds leads to changes in fluorescence emission intensity that responds to chemical or mechanical stimuli. The fast dynamics and diffusion of rhodium-phosphine ions across and through contacting areas of the material provide for reshaping and self-healing abilities that can be further exploited for assembly of multiple pieces into complex forms, all without any loss to material-sensing capabilities.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Pengfei Zhang, Andraž Rešetič, Marc BehlORCiDGND, Andreas LendleinORCiDGND
DOI:https://doi.org/10.1002/macp.202000394
ISSN:1521-3935
Title of parent work (English):Macromolecular chemistry and physics
Publisher:Wiley-VCH
Place of publishing:Weinheim
Publication type:Article
Language:English
Date of first publication:2021/01/04
Publication year:2021
Release date:2024/02/19
Tag:assembly capabilities; coordination bonds; fluorescence stimuli‐ responsivity; multiple functions; reshaping abilities; rhodium(I)– phosphine; solvent resistance
Volume:222
Issue:3
Article number:2000394
Number of pages:11
Funding institution:Helmholtz AssociationHelmholtz Association; German Federal Ministry of Education and Research (BMBF)Federal Ministry of Education & Research (BMBF) [0315496]; Chinese Ministry of Science and Technology (MOST)Ministry of Science and Technology, China [2008DFA51170]; European UnionEuropean Commission [824074]; Projekt DEAL
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.