• search hit 2 of 16
Back to Result List

The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils

  • Management intensity modifies soil properties, e.g., organic carbon (C-org) concentrations and soil pH with potential feedbacks on plant diversity. These changes might influence microbial P concentrations (P-mic) in soil representing an important component of the Pcycle. Our objectives were to elucidate whether abiotic and biotic variables controlling P-mic concentrations in soil are the same for forests and grasslands, and to assess the effect of region and management on P-mic concentrations in forest and grassland soils as mediated by the controlling variables. In three regions of Germany, Schwabische Alb, Hanich-Dun, and Schorfheide-Chorin, we studied forest and grassland plots (each n=150) differing in plant diversity and land-use intensity. In contrast to controls of microbial biomass carbon (C-mic), P-mic was strongly influenced by soil pH, which in turn affected phosphorus (P) availability and thus microbial Puptake in forest and grassland soils. Furthermore, P-mic concentrations in forest and grassland soils increased withManagement intensity modifies soil properties, e.g., organic carbon (C-org) concentrations and soil pH with potential feedbacks on plant diversity. These changes might influence microbial P concentrations (P-mic) in soil representing an important component of the Pcycle. Our objectives were to elucidate whether abiotic and biotic variables controlling P-mic concentrations in soil are the same for forests and grasslands, and to assess the effect of region and management on P-mic concentrations in forest and grassland soils as mediated by the controlling variables. In three regions of Germany, Schwabische Alb, Hanich-Dun, and Schorfheide-Chorin, we studied forest and grassland plots (each n=150) differing in plant diversity and land-use intensity. In contrast to controls of microbial biomass carbon (C-mic), P-mic was strongly influenced by soil pH, which in turn affected phosphorus (P) availability and thus microbial Puptake in forest and grassland soils. Furthermore, P-mic concentrations in forest and grassland soils increased with increasing plant diversity. Using structural equation models, we could show that soil C-org is the profound driver of plant diversity effects on P-mic in grasslands. For both forest and grassland, we found regional differences in P-mic attributable to differing environmental conditions (pH, soil moisture). Forest management and tree species showed no effect on P-mic due to a lack of effects on controlling variables (e.g., C-org). We also did not find management effects in grassland soils which might be caused by either compensation of differently directed effects across sites or by legacy effects of former fertilization constraining the relevance of actual practices. We conclude that variables controlling P-mic or C-mic in soil differ in part and that regional differences in controlling variables are more important for P-mic in soil than those induced by management.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Elisabeth Sorkau, Steffen Boch, Runa S. Boeddinghaus, Michael Bonkowski, Markus FischerORCiD, Ellen Kandeler, Valentin H. Klaus, Till KleinebeckerORCiD, Sven Marhan, Jörg MüllerORCiDGND, Daniel Prati, Ingo Schoening, Marion Schrumpf, Jan Weinert, Yvonne Oelmann
DOI:https://doi.org/10.1002/jpln.201700082
ISSN:1436-8730
ISSN:1522-2624
Title of parent work (English):Journal of plant nutrition and soil science = Zeitschrift für Pflanzenernährung und Bodenkunde
Publisher:Wiley-VCH
Place of publishing:Weinheim
Publication type:Article
Language:English
Date of first publication:2018/11/30
Publication year:2018
Release date:2021/12/14
Tag:age class forest; land-use intensity; meadow; microbes; pasture; unmanaged forest
Volume:181
Issue:2
Number of pages:13
First page:185
Last Page:197
Funding institution:DFGGerman Research Foundation (DFG) [DFG-Oe516/1-2]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.