• Treffer 7 von 17
Zurück zur Trefferliste

Marangoni Contraction of Evaporating Sessile Droplets of Binary Mixtures

  • The Marangoni contraction of sessile drops of a binary mixture of a volatile and a nonvolatile liquid has been investigated experimentally and theoretically. The origin of the contraction is the locally inhomogeneous evaporation rate of sessile drops. This leads to surface tension gradients and thus to a Marangoni flow. Simulations show that the interplay of Marangoni flow, capillary flow, diffusive transport, and evaporative losses can establish a quasistationary drop profile with an apparent nonzero contact angle even if both liquid components individually wet the substrate completely. Experiments with different solvents, initial mass fractions, and gaseous environments reveal a previously unknown universal power-law relation between the apparent contact angle and the relative undersaturation of the ambient atmosphere: theta(app) similar to (RHeq - RH)(1/3). This experimentally observed power law is in quantitative agreement with simulation results. The exponent can also be inferred from a scaling analysis of theThe Marangoni contraction of sessile drops of a binary mixture of a volatile and a nonvolatile liquid has been investigated experimentally and theoretically. The origin of the contraction is the locally inhomogeneous evaporation rate of sessile drops. This leads to surface tension gradients and thus to a Marangoni flow. Simulations show that the interplay of Marangoni flow, capillary flow, diffusive transport, and evaporative losses can establish a quasistationary drop profile with an apparent nonzero contact angle even if both liquid components individually wet the substrate completely. Experiments with different solvents, initial mass fractions, and gaseous environments reveal a previously unknown universal power-law relation between the apparent contact angle and the relative undersaturation of the ambient atmosphere: theta(app) similar to (RHeq - RH)(1/3). This experimentally observed power law is in quantitative agreement with simulation results. The exponent can also be inferred from a scaling analysis of the hydrodynamic-evaporative evolution equations of a binary mixture of liquids with different volatilities.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Stefan Karpitschka, Ferenc LiebigGND, Hans Riegler
DOI:https://doi.org/10.1021/acs.langmuir.7b00740
ISSN:0743-7463
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/28421771
Titel des übergeordneten Werks (Englisch):Langmuir
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
Erscheinungsjahr:2017
Datum der Freischaltung:20.04.2020
Band:33
Seitenanzahl:6
Erste Seite:4682
Letzte Seite:4687
Fördernde Institution:LAM Research AG, Austria
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.