• search hit 2 of 27
Back to Result List

Femtosecond-pulsed laser written and etched fiber bragg gratings for fiber-optical biosensing

  • We present the development of a label-free, highly sensitive fiber-optical biosensor for online detection and quantification of biomolecules. Here, the advantages of etched fiber Bragg gratings (eFBG) were used, since they induce a narrowband Bragg wavelength peak in the reflection operation mode. The gratings were fabricated point-by-point via a nonlinear absorption process of a highly focused femtosecond-pulsed laser, without the need of prior coating removal or specific fiber doping. The sensitivity of the Bragg wavelength peak to the surrounding refractive index (SRI), as needed for biochemical sensing, was realized by fiber cladding removal using hydrofluoric acid etching. For evaluation of biosensing capabilities, eFBG fibers were biofunctionalized with a single-stranded DNA aptamer specific for binding the C-reactive protein (CRP). Thus, the CRP-sensitive eFBG fiber-optical biosensor showed a very low limit of detection of 0.82 pg/L, with a dynamic range of CRP detection from approximately 0.8 pg/L to 1.2 µg/L. The biosensorWe present the development of a label-free, highly sensitive fiber-optical biosensor for online detection and quantification of biomolecules. Here, the advantages of etched fiber Bragg gratings (eFBG) were used, since they induce a narrowband Bragg wavelength peak in the reflection operation mode. The gratings were fabricated point-by-point via a nonlinear absorption process of a highly focused femtosecond-pulsed laser, without the need of prior coating removal or specific fiber doping. The sensitivity of the Bragg wavelength peak to the surrounding refractive index (SRI), as needed for biochemical sensing, was realized by fiber cladding removal using hydrofluoric acid etching. For evaluation of biosensing capabilities, eFBG fibers were biofunctionalized with a single-stranded DNA aptamer specific for binding the C-reactive protein (CRP). Thus, the CRP-sensitive eFBG fiber-optical biosensor showed a very low limit of detection of 0.82 pg/L, with a dynamic range of CRP detection from approximately 0.8 pg/L to 1.2 µg/L. The biosensor showed a high specificity to CRP even in the presence of interfering substances. These results suggest that the proposed biosensor is capable for quantification of CRP from trace amounts of clinical samples. In addition, the adaption of this eFBG fiber-optical biosensor for detection of other relevant analytes can be easily realized.show moreshow less

Download full text files

  • pmnr1073.pdfeng
    (2299KB)

    SHA-1: bba115bdcdc9091227b11f7bd1c5470e3d9e76e3

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sven SchulzeORCiD, Michel Wehrhold, Carsten HilleORCiDGND
URN:urn:nbn:de:kobv:517-opus4-472692
DOI:https://doi.org/10.25932/publishup-47269
ISSN:1866-8372
Title of parent work (German):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1073)
Publication type:Postprint
Language:English
Date of first publication:2021/01/07
Publication year:2018
Publishing institution:Universität Potsdam
Release date:2021/01/07
Tag:C-reactive; aptamers; fiber Bragg gratings; fiber etching; fiber-optical sensors; nanostructure fabrication; ultra-fast laser inscription
Issue:1073
Number of pages:22
Source:Sensors 18 (2018) 9, Art. 2844 DOI: 10.3390/s18092844
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Peer review:Referiert
Grantor:Multidisciplinary Digital Publishing Institute (MDPI)
Publishing method:Open Access / Green Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.