• search hit 1 of 1
Back to Result List

Formation of conjugates between beta-lactoglobulin and allyl isothiocyanate effect on protein heat aggregation, foaming and emulsifying properties

  • Whey proteins are widely used food ingredients due to their nutritional and functional properties (gelling, emulsifying, foaming). Owning to their structure (free thiol group, lysine residues, hydrophobic pocket), they can also be used as carriers for bioactives. In this study, conjugates between beta-lactoglobulin (beta-lg), and a bioactive metabolite from Brassicaceae vegetables, allyl isothiocyanate (AITC) were formed. Heat aggregation behavior (85 degrees C, 15 min), foaming and emulsifying properties of conjugates, at pH 4.0 and 7.1, were evaluated. Conjugates were formed by incubating beta-lg (0.5 mM) with AITC (0.05-20 mM) in water at pH 8.5 and room temperature. AITC primarily reacted with beta-lg's free thiol group (K-D = 0.2 +/- 0.1 mM) and thereafter with its amino groups (K-D 10.8 +/- 3.4 mM). AITC binding destabilized secondary and tertiary structure of beta-lg at pH 7.1, whereas induced molten globule conformation at pH 4.0. Conjugation reduced the heat aggregation of beta-lg at pH 7.1, while promoting it at pH 4.0.Whey proteins are widely used food ingredients due to their nutritional and functional properties (gelling, emulsifying, foaming). Owning to their structure (free thiol group, lysine residues, hydrophobic pocket), they can also be used as carriers for bioactives. In this study, conjugates between beta-lactoglobulin (beta-lg), and a bioactive metabolite from Brassicaceae vegetables, allyl isothiocyanate (AITC) were formed. Heat aggregation behavior (85 degrees C, 15 min), foaming and emulsifying properties of conjugates, at pH 4.0 and 7.1, were evaluated. Conjugates were formed by incubating beta-lg (0.5 mM) with AITC (0.05-20 mM) in water at pH 8.5 and room temperature. AITC primarily reacted with beta-lg's free thiol group (K-D = 0.2 +/- 0.1 mM) and thereafter with its amino groups (K-D 10.8 +/- 3.4 mM). AITC binding destabilized secondary and tertiary structure of beta-lg at pH 7.1, whereas induced molten globule conformation at pH 4.0. Conjugation reduced the heat aggregation of beta-lg at pH 7.1, while promoting it at pH 4.0. Conjugates adsorbed faster to air/water and oil/water interfaces at pH 4.0 than at pH 7.1. After 30 min, air/water surface tension was lower at pH 4.0 (47 mN m(-1)) than at pH 7.1 (57 mN m(-1)), while the surface tension of the oil/water interface was 8 mN m(-1) at both pHs. Foams produced with beta-lg-AITC conjugates at pH 4.0 exhibited higher volume and liquid stabilities compared to foams obtained at pH 7.1. Emulsions formed with conjugates at both pHs were destabilized by creaming due to flocculation, but coalescence was prevented. This study revealed that whey protein could potentially be used for the delivery of isothiocyanates in the form of foam or emulsion-based products.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Koralja Rade-Kukic, C. Schmitt, Harshadrai Manilal RawelORCiDGND
DOI:https://doi.org/10.1016/j.foodhyd.2010.08.018
ISSN:0268-005X
Title of parent work (English):Food hydrocolloids
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:Allyl isothiocyanate; Emulsifying properties; Foaming properties; Heat aggregation; Molecular structure; beta-Lactoglobulin
Volume:25
Issue:4
Number of pages:13
First page:694
Last Page:706
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.