• Treffer 1 von 2
Zurück zur Trefferliste

Silver-Iron Hierarchical Microflowers for Highly Efficient H2O2 Nonenzymatic Amperometric Detection

  • This study addresses the fabrication of monodispersed iron-doped silver meso-hierarchical flower-like structures via a facile chemical procedure. The morphology of the obtained silver particles has been tuned by changing the concentration of the structure-directing agent (malonic acid). Ball-shaped silver particles were formed in the absence of malonic acid (MA), while silver particles with craspedia-globosa, chrysanthemum, and dahlia flower-like structures were obtained in the presence of 0.2, 0.5, and 1 mM malonic acid, respectively. The doping of these dahlia flower-like structures with trace amounts of iron (<= 5% Fe weight percent) led to the formation of globe-amaranth iron-doped microflowers (AgFeamaranth). The as-prepared AgFeamaranth exhibited better performance as a nonenzymatic H2O2 sensor compared to undoped silver particles as demonstrated by their higher catalytic activity and stability together with superior sensitivity (1350 mu M-1 cm(-2), 61 times higher) and lower detection limit (0.1 mu M). These enhancements areThis study addresses the fabrication of monodispersed iron-doped silver meso-hierarchical flower-like structures via a facile chemical procedure. The morphology of the obtained silver particles has been tuned by changing the concentration of the structure-directing agent (malonic acid). Ball-shaped silver particles were formed in the absence of malonic acid (MA), while silver particles with craspedia-globosa, chrysanthemum, and dahlia flower-like structures were obtained in the presence of 0.2, 0.5, and 1 mM malonic acid, respectively. The doping of these dahlia flower-like structures with trace amounts of iron (<= 5% Fe weight percent) led to the formation of globe-amaranth iron-doped microflowers (AgFeamaranth). The as-prepared AgFeamaranth exhibited better performance as a nonenzymatic H2O2 sensor compared to undoped silver particles as demonstrated by their higher catalytic activity and stability together with superior sensitivity (1350 mu M-1 cm(-2), 61 times higher) and lower detection limit (0.1 mu M). These enhancements are attributed to the AgFe unique flower-like structures and to the fact that the iron dopants provide a higher number of electroactive sites and reduce the charge transfer resistance of H2O2 reduction. Additionally, the good stability of AgFe is believed to originate from the faster detachment rate of the in situ-formed gas bubbles from their surfaces compared to undoped silver structures.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Radwan Mohamed SarhanORCiDGND, Gumaa A. El-NagarORCiD, Ahed AbouserieORCiDGND, Christina Roth
DOI:https://doi.org/10.1021/acssuschemeng.8b06182
ISSN:2168-0485
Titel des übergeordneten Werks (Englisch):ACS sustainable chemistry & engineering
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:18.02.2019
Erscheinungsjahr:2019
Datum der Freischaltung:07.04.2021
Freies Schlagwort / Tag:Electrosensing; H2O2; Iron/silver microflowers; Nanostructures; Nonenzymatic
Band:7
Ausgabe:4
Seitenanzahl:15
Erste Seite:4335
Letzte Seite:4342
Fördernde Institution:Dahlem Research School (DRS)
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.