• search hit 1 of 6
Back to Result List

Accurate Valence Ionization Energies from Kohn-Sham Eigenvalues with the Help of Potential Adjustors

  • An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [Gorling Phys. Rev. B 2015, 91, 245120] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a Delta SCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues.An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [Gorling Phys. Rev. B 2015, 91, 245120] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a Delta SCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G(0)W(0) methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in somewhat less accurate ionization energies, which, however, are almost as accurate as those obtained from the most commonly used G(0)W(0) variants.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Adrian Thierbach, Christian Neiss, Lukas Gallandi, Noa Marom, Thomas Koerzdoerfer, Andreas Goerling
DOI:https://doi.org/10.1021/acs.jctc.7b00490
ISSN:1549-9618
ISSN:1549-9626
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/28783360
Title of parent work (English):Journal of chemical theory and computation
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Volume:13
Number of pages:15
First page:4726
Last Page:4740
Funding institution:Deutsche Forschungsgemeinschaft (DFG) through Cluster of Excellence "Engineering of Advanced Materials" at the Friedrich-Alexander-Universitat Erlangen-Nurnberg; National Science Foundation (NSF) Division of Materials Research [DMR1554428]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.