Reliability of flood damage estimations across spatial scales

Verlässlichkeit von Hochwasserschadensschätzungen über räumliche Skalen

  • Natural extreme events are an integral part of nature on planet earth. Usually these events are only considered hazardous to humans, in case they are exposed. In this case, however, natural hazards can have devastating impacts on human societies. Especially hydro-meteorological hazards have a high damage potential in form of e.g. riverine and pluvial floods, winter storms, hurricanes and tornadoes, which can occur all over the globe. Along with an increasingly warm climate also an increase in extreme weather which potentially triggers natural hazards can be expected. Yet, not only changing natural systems, but also changing societal systems contribute to an increasing risk associated with these hazards. These can comprise increasing exposure and possibly also increasing vulnerability to the impacts of natural events. Thus, appropriate risk management is required to adapt all parts of society to existing and upcoming risks at various spatial scales. One essential part of risk management is the risk assessment including the estimationNatural extreme events are an integral part of nature on planet earth. Usually these events are only considered hazardous to humans, in case they are exposed. In this case, however, natural hazards can have devastating impacts on human societies. Especially hydro-meteorological hazards have a high damage potential in form of e.g. riverine and pluvial floods, winter storms, hurricanes and tornadoes, which can occur all over the globe. Along with an increasingly warm climate also an increase in extreme weather which potentially triggers natural hazards can be expected. Yet, not only changing natural systems, but also changing societal systems contribute to an increasing risk associated with these hazards. These can comprise increasing exposure and possibly also increasing vulnerability to the impacts of natural events. Thus, appropriate risk management is required to adapt all parts of society to existing and upcoming risks at various spatial scales. One essential part of risk management is the risk assessment including the estimation of the economic impacts. However, reliable methods for the estimation of economic impacts due to hydro-meteorological hazards are still missing. Therefore, this thesis deals with the question of how the reliability of hazard damage estimates can be improved, represented and propagated across all spatial scales. This question is investigated using the specific example of economic impacts to companies as a result of riverine floods in Germany. Flood damage models aim to describe the damage processes during a given flood event. In other words they describe the vulnerability of a specific object to a flood. The models can be based on empirical data sets collected after flood events. In this thesis tree-based models trained with survey data are used for the estimation of direct economic flood impacts on the objects. It is found that these machine learning models, in conjunction with increasing sizes of data sets used to derive the models, outperform state-of-the-art damage models. However, despite the performance improvements induced by using multiple variables and more data points, large prediction errors remain at the object level. The occurrence of the high errors was explained by a further investigation using distributions derived from tree-based models. The investigation showed that direct economic impacts to individual objects cannot be modeled by a normal distribution. Yet, most state-of-the-art approaches assume a normal distribution and take mean values as point estimators. Subsequently, the predictions are unlikely values within the distributions resulting in high errors. At larger spatial scales more objects are considered for the damage estimation. This leads to a better fit of the damage estimates to a normal distribution. Consequently, also the performance of the point estimators get better, although large errors can still occur due to the variance of the normal distribution. It is recommended to use distributions instead of point estimates in order to represent the reliability of damage estimates. In addition current approaches also mostly ignore the uncertainty associated with the characteristics of the hazard and the exposed objects. For a given flood event e.g. the estimation of the water level at a certain building is prone to uncertainties. Current approaches define exposed objects mostly by the use of land use data sets. These data sets often show inconsistencies, which introduce additional uncertainties. Furthermore, state-of-the-art approaches also imply problems of missing consistency when predicting the damage at different spatial scales. This is due to the use of different types of exposure data sets for model derivation and application. In order to face these issues a novel object-based method was developed in this thesis. The method enables a seamless estimation of hydro-meteorological hazard damage across spatial scales including uncertainty quantification. The application and validation of the method resulted in plausible estimations at all spatial scales without overestimating the uncertainty. Mainly newly available data sets containing individual buildings make the application of the method possible as they allow for the identification of flood affected objects by overlaying the data sets with water masks. However, the identification of affected objects with two different water masks revealed huge differences in the number of identified objects. Thus, more effort is needed for their identification, since the number of objects affected determines the order of magnitude of the economic flood impacts to a large extent. In general the method represents the uncertainties associated with the three components of risk namely hazard, exposure and vulnerability, in form of probability distributions. The object-based approach enables a consistent propagation of these uncertainties in space. Aside from the propagation of damage estimates and their uncertainties across spatial scales, a propagation between models estimating direct and indirect economic impacts was demonstrated. This enables the inclusion of uncertainties associated with the direct economic impacts within the estimation of the indirect economic impacts. Consequently, the modeling procedure facilitates the representation of the reliability of estimated total economic impacts. The representation of the estimates' reliability prevents reasoning based on a false certainty, which might be attributed to point estimates. Therefore, the developed approach facilitates a meaningful flood risk management and adaptation planning. The successful post-event application and the representation of the uncertainties qualifies the method also for the use for future risk assessments. Thus, the developed method enables the representation of the assumptions made for the future risk assessments, which is crucial information for future risk management. This is an important step forward, since the representation of reliability associated with all components of risk is currently lacking in all state-of-the-art methods assessing future risk. In conclusion, the use of object-based methods giving results in the form of distributions instead of point estimations is recommended. The improvement of the model performance by the means of multi-variable models and additional data points is possible, but small. Uncertainties associated with all components of damage estimation should be included and represented within the results. Furthermore, the findings of the thesis suggest that, at larger scales, the influence of the uncertainty associated with the vulnerability is smaller than those associated with the hazard and exposure. This leads to the conclusion that for an increased reliability of flood damage estimations and risk assessments, the improvement and active inclusion of hazard and exposure, including their uncertainties, is needed in addition to the improvements of the models describing the vulnerability of the objects.show moreshow less
  • Extreme Naturereignisse sind ein integraler Bestandteil der Natur der Erde. Sie werden erst dann zu Gefahren für die Gesellschaft, wenn sie diesen Ereignissen ausgesetzt ist. Dann allerdings können Naturgefahren verheerende Folgen für die Gesellschaft haben. Besonders hydro-meteorologische Gefahren wie zum Beispiel Flusshochwasser, Starkregenereignisse, Winterstürme, Orkane oder Tornados haben ein hohes Schadenspotential und treten rund um den Globus auf. Einhergehend mit einer immer wärmer werdenden Welt, werden auch Extremwetterereignisse, welche potentiell Naturgefahren auslösen können, immer wahrscheinlicher. Allerdings trägt nicht nur eine sich verändernde Umwelt zur Erhöhung des Risikos von Naturgefahren bei, sondern auch eine sich verändernde Gesellschaft. Daher ist ein angemessenes Risikomanagement erforderlich um die Gesellschaft auf jeder räumlichen Ebene an diese Veränderungen anzupassen. Ein essentieller Bestandteil dieses Managements ist die Abschätzung der ökonomischen Auswirkungen der Naturgefahren. Bisher allerdingsExtreme Naturereignisse sind ein integraler Bestandteil der Natur der Erde. Sie werden erst dann zu Gefahren für die Gesellschaft, wenn sie diesen Ereignissen ausgesetzt ist. Dann allerdings können Naturgefahren verheerende Folgen für die Gesellschaft haben. Besonders hydro-meteorologische Gefahren wie zum Beispiel Flusshochwasser, Starkregenereignisse, Winterstürme, Orkane oder Tornados haben ein hohes Schadenspotential und treten rund um den Globus auf. Einhergehend mit einer immer wärmer werdenden Welt, werden auch Extremwetterereignisse, welche potentiell Naturgefahren auslösen können, immer wahrscheinlicher. Allerdings trägt nicht nur eine sich verändernde Umwelt zur Erhöhung des Risikos von Naturgefahren bei, sondern auch eine sich verändernde Gesellschaft. Daher ist ein angemessenes Risikomanagement erforderlich um die Gesellschaft auf jeder räumlichen Ebene an diese Veränderungen anzupassen. Ein essentieller Bestandteil dieses Managements ist die Abschätzung der ökonomischen Auswirkungen der Naturgefahren. Bisher allerdings fehlen verlässliche Methoden um die Auswirkungen von hydro-meteorologischen Gefahren abzuschätzen. Ein Hauptbestandteil dieser Arbeit ist daher die Entwicklung und Anwendung einer neuen Methode, welche die Verlässlichkeit der Schadensschätzung verbessert. Die Methode wurde beispielhaft zur Schätzung der ökonomischen Auswirkungen eines Flusshochwassers auf einzelne Unternehmen bis hin zu den Auswirkungen auf das gesamte Wirtschaftssystem Deutschlands erfolgreich angewendet. Bestehende Methoden geben meist wenig Information über die Verlässlichkeit ihrer Schätzungen. Da diese Informationen Entscheidungen zur Anpassung an das Risiko erleichtern, wird die Verlässlichkeit der Schadensschätzungen mit der neuen Methode dargestellt. Die Verlässlichkeit bezieht sich dabei nicht nur auf die Schadensschätzung selber, sondern auch auf die Annahmen, die über betroffene Gebäude gemacht werden. Nach diesem Prinzip kann auch die Verlässlichkeit von Annahmen über die Zukunft dargestellt werden, dies ist ein wesentlicher Aspekt für Prognosen. Die Darstellung der Verlässlichkeit und die erfolgreiche Anwendung zeigt das Potential der Methode zur Verwendung von Analysen für gegenwärtige und zukünftige hydro-meteorologische Gefahren.show moreshow less

Download full text files

  • sieg_diss.pdfeng
    (15588KB)

    SHA-1:979ce87044171280e76a344a720fc931f54e277b

Export metadata

Metadaten
Author:Tobias SiegORCiDGND
URN:urn:nbn:de:kobv:517-opus4-426161
DOI:https://doi.org/10.25932/publishup-42616
Referee:Bruno MerzORCiDGND, Heidi KreibichORCiDGND, Matthijs KokORCiDGND
Advisor:Bruno Merz, Heidi Kreibich
Document Type:Doctoral Thesis
Language:English
Year of Completion:2018
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2019/02/22
Release Date:2019/03/29
Tag:OpenStreetMap; Schadensmodellierung; Unsicherheiten; hydro-meteorologische Risiken; probabilistischer Ansatz; ökonomische Auswirkungen
OpenStreetMap; damage modeling; economic impacts; hydro-meteorological risk; probabilistic approach; uncertainty
Pagenumber:XIII, 115
RVK - Regensburg Classification:AR 14120
Organizational units:Extern / Extern
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht