The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 6
Back to Result List

Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015)

  • The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stabilityThe Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Alesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Alesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Alesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Alesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3 degrees C warmer than the climatology during winter. Plain Language Summary The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and the atmospheric boundary layer characteristics. During winter, we find the strongest impact of synoptic cyclones, which transport warm and moist air into the cold and dry Arctic atmosphere. In spring, incoming solar radiation warms the surface. This leads to very different thermodynamic conditions and higher moisture content, which reduces the contrast between stormy and calm periods. Further, we compare the N-ICE2015 measurements to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Alesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. The comparisons highlight the value of the N-ICE2015 observation and show the importance of winter time observations in the Arctic North Atlantic sector.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Markus KayserORCiDGND, Marion MaturilliORCiD, Robert M. GrahamORCiD, Stephen R. HudsonORCiD, Annette RinkeORCiD, Lana CohenORCiD, Joo-Hong KimORCiD, Sang-Jong ParkORCiD, Woosok MoonORCiD, Mats A. GranskogORCiD
DOI:https://doi.org/10.1002/2016JD026089
ISSN:2169-897X
ISSN:2169-8996
Title of parent work (English):Journal of geophysical research-atmosheres
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Date of first publication:2017/05/02
Publication year:2017
Release date:2021/03/02
Volume:122
Issue:20
Number of pages:18
First page:10855
Last Page:10872
Funding institution:(ICE); Norwegian Polar Institute; Korean Polar Research Institute; Alfred Wegener Institute; Deutsche Forschungsgemeinschaft (DFG) [SFB/TR 172]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Publishing method:Open Access / Bronze Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.