Granitoid melt inclusions in orogenic peridotite and the origin of garnet clinopyroxenite

  • Granitic melt inclusions were found in layers of garnet clinopyroxenites from orogenic peridotites hosted in high-pressure felsic granulites of the Granulitgebirge, central Europe. The inclusions are both glassy and crystallized, and occur as clusters in the garnet. Microstructural features suggest that the inclusions formed while garnet was growing as a peritectic phase, likely alongside clinopyroxene. The chemistry of the melt, in particular its trace element signature, shows a crustal contribution, probably due to the involvement of phengite in the melt-producing reaction, most likely in the presence of a fluid. The presence of a granitoid melt in mantle rocks may be the result of localized melting of a phengite-bearing protolith either already present in the peridotites or, more likely, within the local deeply subducted crustal units. In the latter case, the melt would have infiltrated the peridotites and generated pyroxenite via metasomatism. In either case, the presence of granitoid inclusions in orogenic peridotite providesGranitic melt inclusions were found in layers of garnet clinopyroxenites from orogenic peridotites hosted in high-pressure felsic granulites of the Granulitgebirge, central Europe. The inclusions are both glassy and crystallized, and occur as clusters in the garnet. Microstructural features suggest that the inclusions formed while garnet was growing as a peritectic phase, likely alongside clinopyroxene. The chemistry of the melt, in particular its trace element signature, shows a crustal contribution, probably due to the involvement of phengite in the melt-producing reaction, most likely in the presence of a fluid. The presence of a granitoid melt in mantle rocks may be the result of localized melting of a phengite-bearing protolith either already present in the peridotites or, more likely, within the local deeply subducted crustal units. In the latter case, the melt would have infiltrated the peridotites and generated pyroxenite via metasomatism. In either case, the presence of granitoid inclusions in orogenic peridotite provides direct evidence for a genetic connection between a high-pressure crustal melt and garnet pyroxenites. The in situ characterization of these remnants of natural melt provides direct quantitative constraints on (one of) the agents responsible for the interaction between crust and mantle.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Alessia BorghiniORCiD, Silvio FerreroORCiDGND, Bernd WunderGND, Oscar LaurentORCiDGND, Martin Andreas ZiemannGND
DOI:https://doi.org/10.1130/G45316.1
ISSN:0091-7613
ISSN:1943-2682
Title of parent work (English):Geology
Publisher:American Institute of Physics
Place of publishing:Boulder
Publication type:Article
Language:English
Date of first publication:2018/06/25
Publication year:2018
Release date:2020/08/20
Volume:46
Issue:11
Number of pages:4
First page:1007
Last Page:1010
Funding institution:Federal Ministry of Education & Research (BMBF), German Research Foundation (DFG)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
External remark:This article is part of this cumulative dissertation
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.