Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe]
ISSN (print) 2198-9974
URN urn:nbn:de:kobv:517-series-1029
Publ.: Press and Public Relations Department on behalf of the President of the University of Potsdam
URN urn:nbn:de:kobv:517-series-1029
Publ.: Press and Public Relations Department on behalf of the President of the University of Potsdam
Refine
Has Fulltext
- yes (20)
Year of publication
Document Type
- Part of Periodical (20)
Language
- English (20)
Is part of the Bibliography
- yes (20)
Institute
02/2022
Portal Wissen = Humans
(2022)
When humans write and talk about humans, you notice right away: It’s their favorite topic. It is not only that everyone (usually) is closest to themselves. As a species, Homo sapiens also attaches distinct importance to themselves. Aristotle was concerned about the order of things and ranked the human being – as the seemingly most complicated one – at the “very top.” The book of Genesis in the Bible seems to take this up, calling the human being in a way the final point or “pride of creation” who should “rule” over Earth and all living beings. An impressive story, but it did not stand the test of time. The theory of evolution changed the pyramid into a far-branched tree and the human being to a little branch among many others. What has remained is that humans are not so easy to understand, especially to themselves. Or, as Marie von Ebner-Eschenbach said, “The simplest human is still a very complicated being.”
This and the ongoing interest of humans in themselves ensure that many sciences also deal with him, her, or us, again and again and from every conceivable angle. Medicine and linguistics, educational research and psychology, history and sociology – many disciplines revolve around human(kind) and their actions. Therefore, it is hardly difficult to take a small exemplary human research journey through the University of Potsdam with this issue of “Portal Wissen.” We begin with a visit to the BabyLAB, where you can rewardingly watch even the youngest children learn languages. An economist points out that differences between men and women on their paychecks are anything but acceptable, and a start-up team showed us an app that can help you do something against dementia before it’s too late.
Besides, it should have been clear long ago: If we want to understand ourselves, we must always look at what is surrounding us. This means the social interactions that challenge and shape us on both a small and large scale. That’s why we talked to historians who are investigating corruption in the ancient world. But it also includes the environment, both living and non-living, on which we leave our mark and which, in turn, constantly influences us. A specialist in ancient DNA, for example, is investigating whether even Neanderthals left an ecological footprint, while an ecologist is searching for the consequences of climate change for biodiversity in Africa. And a media scientist has spent years analyzing how various images can help communicate scientific findings on climate change in such a way that they are understood.
We have not forgotten that the coronavirus continues to influence both our lives and research: A psychologist is working with partners throughout Germany to study how children and young people with chronic diseases get through the pandemic.
In addition, we naturally do not leave aside the diversity of research – created by humans – at the University of Potsdam: We introduce one of Germany’s best gravitational wave researcher and talk about the role of mathematics in earthquake research. Last but not least, we had the work of the new research center for digital data law explained to us.
01/2022
Portal Wissen = Together
(2022)
What makes humans human – and what distinguishes them from other creatures on Earth – has long been fervently discussed and is still being discussed today. “Homo sapiens”, the scientific self-description of our species, is already the characterization as an “understanding, wise, knowledgeable human being”. It could be argued that we owe this additional knowledge to our trait of (basically) feeling particularly attached to our equals. We are what we are, above all, and perhaps even exclusively: together. The development that eventually turned communities into societies in the course of which culture and knowledge emerged, could well be told as a story of more and less togetherness. People were always successful when they lived with instead of against each other. Things that were much admired later came into being when people worked together, knowledge that made history as progress was developed by minds that came into a conversation.
It is therefore all the more surprising that this “recipe for success” is being pushed into the background at a time when it is needed more than ever. As a result of the Corona pandemic, we are living in a time in which the world is faced with a – literally – all-encompassing task which it can only overcome together, as has already been said many times. And yet, many people are primarily concerned about their own well-being in various ways – not infrequently without reflecting that the well-being of many others, and possibly ultimately even their own, suffers as a consequence. When there is a need for more togetherness while there is a lot of talk about division, it becomes clear that the success of togetherness is not a foregone conclusion: If we want to achieve something together, we must always keep talking about the goals and the way to get there.
For this issue, we have collected what people can achieve together and how research is trying to fathom the “secret of togetherness” in many ways. We visited a team of environmental scientists who are developing forest gardens together with committed residents – as green oases in the middle of cities. We took a first look at the prototype of a national education platform that will bundle all kinds of digital learning in the future. We also present a model project that aims to help teachers and students prevent hate speech. Last but not least, the issue presents a small selection of various collaborations across disciplinary and national borders: We show how researchers from law and political science are working together to examine the ups and downs of international law, and why religious studies scholars from Potsdam and Iraq benefit from each other.
Of course, the issue also brings together the entire spectrum of research at the University of Potsdam, we promise! We found out how heavy rain turn into flash floods and how to prepare for such events. We interviewed a migration researcher and visited a geoscientist who is drawn to mountains and valleys alike. It’s about – often unwritten – “body rules” in everyday life, the exploration of our gaze with the help of artificial intelligence, 33 answers full of complexity, and about mathematics at infinity. Enough words. Read for yourself – alone or together. Just as you like!
02/2021
Portal Wissen = Departure
(2021)
On October 20, 1911, the Norwegian Roald Amundsen left the safe base camp “Framheim” at the Bay of Whales together with four other explorers and 52 sledge dogs to be the first person to reach the South Pole. Ahead of them lay the perpetual ice at temperatures of 20 to 30 degrees Celsius below zero and a distance of 1,400 kilometers. After eight weeks, the group reached its destination on December 13. The men planted the Norwegian flag in the lonely snow and shortly afterwards set off to make their way back – celebrated, honored as conquerors of the South Pole and laden with information and knowledge from the world of Antarctica. The voyage of Amundsen and his companions is undoubtedly so extraordinary because the five proved that it was possible and were the first to succeed. It is, however, also a symbol of what enables humans to push the boundaries of their world: the urge to set out into the unknown, to discover what has not yet been found, explored, and described.
What distinguishes science - even before each discovery and new knowledge – is the element of departure. Questioning apparent certainties, taking a critical look at outdated knowledge, and breaking down encrusted thought patterns is the starting point of exploratory curiosity. And to set out from there for new knowledge is the essence of scientific activities – neither protected nor supported by the reliable and known. Probing, trying, courageously questioning, and sensing that the solid ground, which still lies hidden, can only be reached again in this way. “Research is always a departure for new shoreless waters,” said chemist Prof. Dr. Hans-Jürgen Quadbeck-Seeger. Leaving behind the safe harbor, trusting that new shores are waiting and can be reached is the impetus that makes science so important and valuable.
For the current issue of the University of Potsdam’s research magazine, we looked over the shoulders of some researchers as they set out on new research journeys – whether in the lab, in the library, in space, or in the mind. Astrophysicist Lidia Oskinova, for example, uses the Hubble telescope to search for particularly massive stars, while hydrologist Thorsten Wagener is trying to better understand the paths of water on Earth. Economists and social scientists such as Elmar Kriegler and Maik Heinemann are researching in different projects what politics can do to achieve a turnaround in climate policy and stop climate change.
Time and again, however, such departures are themselves the focus of research: And a group of biologists and environmental scientists is investigating how nature revives forest fire areas and how the newly emerging forests can become more resilient to future fires.
Since – as has already been said – a departure is inherent in every research question, this time the entire issue of “Portal Wissen” is actually devoted to the cover topic. And so we invite you to set out with Romance linguist Annette Gerstenberg to research language in old age, with immunologist Katja Hanack to develop a quick and safe SARS-CoV-2 test, and with the team of the Potsdam Center for Industry 4.0 to the virtual factory of tomorrow. And we will show you how evidence- based economic research can inform and advise politicians, and how a warning system is intended to prevent future accidents involving cyclists.
So, what are you waiting for?!
01/2021
Portal Wissen = Change
(2021)
Change makes everything different. Let’s be honest: Just about everything is constantly in transformation. Even huge massifs that seem like eternity turned to stone will eventually dissolve into dust. So is change itself the only constant? The Greek philosopher Heraclitus certainly thought so. He said, “The only thing that is constant is change.”
Change is frightening. A change that we cannot explain throws us into turmoil – like a magic trick we cannot decipher. Viruses that mutate, ecosystems that collapse, stars that perish – they all seem to threaten the fragile balance that makes our existence possible. Humanity is late in recognizing that we ourselves are all too often the impetus for dangerous transformations.
Change gives hope. People have always been fascinated by change and felt compelled to explore its origin and essence. Quite successfully. We understand many things much better than generations before. But well enough? Not at all. Alexander von Humboldt said, “Every law of nature that reveals itself to the observer suggests a higher, as yet unrecognized one.” There is still much to be done.
The current issue of Portal Wissen is all about change. We spoke to an astrophysicist who has found her happiness in researching the formation and change of stars. We also look at different aspects of the very earthly climate change and its consequences: A geoscientist explains how global warming affects the stability of mountain ranges.
A legal expert makes clear that the call for a right to climate protection has gone largely unheard until now. How human land use affects biodiversity is being investigated by young researchers of the “Bio- Move” research training group, who have provided us with insights into their work on brown hares, water fleas, and mallard ducks. Other researchers focus on change in the contexts of humans. A group of nutrition scientists at the German Institute of Human Nutrition (DIfE) and sports scientists at the University of Potsdam are investigating the factors that cause our bodies to change as we age – and why some people lose muscles more quickly than others.
Despite all these changes, we do not lose sight of the diversity of research at the University of Potsdam. A visit to the laboratory of the project “OptiZeD” gives us an idea of the possibilities offered by optical sensors for the personalized medicine of tomorrow, while an educational researcher explains why cultural diversity is an asset beneficial to our education. In addition, a cultural scientist reports on the fascination of comics. They are all part of the hopeful change that science is initiating and accomplishing! Enjoy the read!
02/2020
Portal Wissen = Health
(2020)
The Coronavirus pandemic has made it very clear how much health and well-being determine our lives. And that science led the way in this regard could not be ignored. At the University of Potsdam, too, many researchers deal with aspects of health maintenance, whether in nutritional sciences, sports and rehabilitation medicine, biochemistry, or psychology. Their research includes supporting chronically ill children and the professional handling of risks, as you can read in this issue of our magazine.
With the establishment of our seventh faculty, the Faculty of Health Sciences, these and many new medical topics are getting more attention at the University of Potsdam. While in the beginning, the “Brandenburg Health Campus” funded by the federal state of Brandenburg was a virtual network of university and non-university research, it is now getting more points of intersection and, not only since COVID-19, a very practical use and plausible to everyone.
The Faculty of Health Sciences, founded in 2018, is supported by three institutions: the University of Potsdam, the Brandenburg Technical University Cottbus-Senftenberg and the Brandenburg Medical School in Neuruppin. They pursue an interdisciplinary approach that holistically develops teaching, transfers new scientific findings from theory to practice and thus further improves overall medical care in Brandenburg. Their vision of being a central platform of research, teaching, and transfer combines socially relevant issues and existing expertise to align them with the needs of people in Brandenburg and use them to their benefit. This interdisciplinary structure has never been more important to advancing patient-oriented basic research and health care models. An innovative concept that can make Brandenburg a pioneer.
In the meantime, the Faculty of Health Sciences has established 16 new professorships at the supporting universities, which are concerned with medicine and healthy aging, health services research, nursing and rehabilitation sciences, and telemedicine. Cardiology and physiology will play a central role as well. In general, the innovative faculty counts on strong interdisciplinary relationships, for example with nutritional sciences and the digital health department at the Digital Engineering Faculty. The role of digitization and well-prepared data in combating the Coronavirus pandemic can also be read about in this issue.
As usual, the research magazine addresses the full range of research at the university: We introduce historian Dominik Geppert, who deals with the history of unified Germany after 1990 embedded in the tensions created by a context of national unification, European integration, and global networking. In a self-experiment, we explored together with a psycholinguist how to research word-finding disorders. Last but not least, we were able to take part in a trip to Namibia, where ecologists from Potsdam examine wildlife management in the threatened savannah. Let them take you where kudu and springbok live!
01/2020
Portal Wissen = Energy
(2020)
Energy – there is something to it. There is, of course, the matter-of-fact definition in every student encyclopedia: “the capacity to do mechanical work, transfer heat, or emit light.” In this way, energy accompanies us, often undetected, all day long: getting out of bed, turning on the heat, switching on the lights, taking a hot shower, getting dressed, making coffee, having breakfast – before we have even left the house, we have already released, transformed, applied, and refueled a lot of energy. And we haven’t even worked, at least not in the traditional sense.
But energy is not just a physical quantity that, due to its omnipresence, plays a key role in every natural science discipline, such as biology and chemistry, but also in almost every technical field. It is also indispensable when it comes to how we understand and describe our world and our activities – and it has been for a long time. How about an example? The Greek philosopher Aristotle was the first to speak of enérgeia, for him a rather nonphysical thing, a living “reality and effectiveness ” – that which makes the possible real. About 2,100 years later, the uncrowned king of German literature Johann Wolfgang von Goethe declared it to be a humanistic essence. “What can we call our own if not energy, strength, and will!” And for his contemporary Wilhelm von Humboldt, energy “was the human’s first and only virtue”. Although physics began to dominate the concept of energy when it became the leading science in the 19th century, energy remained significant in many areas.
Reason enough for us to take a look at energy-related matters at the University of Potsdam. We found them in a wide range of disciplines: While Iranian physicist Safa Shoaee is researching how organic materials can be used to manufacture the solar cells of the future, Swedish environmental researcher Johan Lilliestam is focusing on the different dimensions of the energy transition to learn what makes it successful. Slavicist Susanne Strätling, on the other hand, crosses the boundaries of her discipline as she examines a complex conceptual history and tries to find out why energy electrifies us today more than ever. And physicist Markus Gühr is able to use ultrashort flashes of light to investigate how molecules change under its influence and convert energy in the process.
Of course, we have enough energy to highlight the diversity of research at the University of Potsdam besides the feature topic of this issue. A cognitive researcher, for example, explains why our brain processes both music and language according to its own respective rhythm, while an environmental researcher presents a method that uses particles from outer space to measure soil moisture. Educational researchers have also launched a study on hate speech in schools and we introduce a palaeoclimatologist who is one of twelve researchers in the new postdoc program at the University of Potsdam. We have spared no energy!
02/2019
Portal Wissen = Data
(2019)
Data assimilation? Stop! Don’t be afraid, please, come closer! No tongue twister, no rocket science. Or is it? Let’s see. It is a matter of fact, however, that data assimilation has been around for a long time and (almost) everywhere. But only in the age of supercomputers has it assumed amazing proportions.
Everyone knows data. Assimilation, however, is a difficult term for something that happens around us all the time: adaptation. Nature in particular has demonstrated to us for millions of years how evolutionary adaptation works. From unicellular organisms to primates, from algae to sequoias, from dinosaurs ... Anyone who cannot adapt will quickly not fit in anymore.
We of course have also learned to adapt in new situations and act accordingly. When we want to cross the street, we have a plan of how to do this: go to the curb, look left and right, and only cross the street if there’s no car (coming). If we do all this and adapt our plan to the traffic we see, we will not just safely cross the street, but we will also have successfully practiced data assimilation.
Of course, that sounds different when researchers try to explain how data assimilation helps them. Meteorologists, for example, have been working with data assimilation for years. The German Weather Service writes, “In numerical weather prediction, data assimilation is the approximation of a model run to the actual development of the atmosphere as described by existing observations.” What it means is that a weather forecast is only accurate if the model which is used for its calculation is repeatedly updated, i.e. assimilated, with new measurement data.
In 2017 an entire Collaborative Research Center was established at the University of Potsdam, CRC 1294, to deal with the mathematical basics of data assimilation. For Portal Wissen, we asked the mathematicians and speakers of the CRC Prof. Sebastian Reich and Prof. Wilhelm Huisinga how exactly data assimilation works and in which areas of research they can be used profitably in the future. We have looked at two projects at the CRC itself: the analysis of eye movements and the research on space weather.
In addition, the current issue is full of research projects that revolve around data in very different ways. Atmospheric physicist Markus Rex throws a glance at the spectacular MOSAiC expedition. Starting in September 2019, the German research icebreaker “Polarstern” will drift through the Arctic Ocean for a year and collect numerous data on ice, ocean, biosphere, and atmosphere. In the project “TraceAge”, nutritionists will use the data from thousands of subjects who participated in a long-term study to find out more about the function of trace elements in our body. Computer scientists have developed a method to filter relevant information from the flood of data on the worldwide web so as to enable visually impaired to surf the Internet more easily. And a geophysicist is working on developing an early warning system for volcanic eruptions from seemingly inconspicuous seismic data.
Not least, this issue deals with the fascination of fire and ice, the possibilities that digitization offers for administration, and the question of how to inspire children for sports and exercise. We hope you enjoy reading – and if you send us some of your reading experience, we will assimilate it into our next issue. Promised!
01/2019
For a long time, there were things on this planet that only humans could do, but this time might be coming to an end. By using the universal tool that makes us unique – our intelligence – we have worked to eliminate our uniqueness, at least when it comes to solving cognitive tasks. Artificial intelligence is now able to play chess, understand language, and drive a car – and often better than we.
How did we get here? The philosopher Aristotle formulated the first “laws of thought” in his syllogisms, and the mathematicians Blaise Pascal and Wilhelm Leibniz built some of the earliest calculating machines. The mathematician George Boole was the first to introduce a formal language to represent logic. The natural scientist Alan Turing created his deciphering machine “Colossus,” the first programmable computer. Philosophers, mathematicians, psychologists, and linguists – for centuries, scientists have been developing formulas, machines, and theories that were supposed to enable us to reproduce and possibly even enhance our most valuable ability.
But what exactly is “artificial intelligence”? Even the name calls for comparison. Is artificial intelligence like human intelligence? Alan Turing came up with a test in 1950 to provide a satisfying operational definition of intelligence: According to him, a machine is intelligent if its thinking abilities equal those of humans. It has to reach human levels for any cognitive task. The machine has to prove this by convincing a human interrogator that it is human. Not an easy task: After all, it has to process natural language, store knowledge, draw conclusions, and learn something new. In fact, over the past ten years, a number of AI systems have emerged that have passed the test one way or another in chat conversations with automatically generated texts or images. Nowadays, the discussion usually centers on other questions: Does AI still need its creators? Will it not only outperform humans but someday replace them – be it in the world of work or even beyond? Will AI solve our problems in the age of all-encompassing digital networking – or will it become a part of the problem?
Artificial intelligence, its nature, its limitations, its potential, and its relationship to humans were being discussed even before it existed. Literature and film have created scenarios with very different endings. But what is the view of the scientists who are actually researching with or about artificial intelligence? For the current issue of our research magazine, a cognitive scientist, an education researcher, and a computer scientist shared their views. We also searched the University for projects whose professional environment reveals the numerous opportunities that AI offers for various disciplines. We cover the geosciences and computer science as well as economics, health, and literature studies.
At the same time, we have not lost sight of the broad research spectrum at the University: a legal expert introduces us to the not-so-distant sphere of space law while astrophysicists work on ensuring that state-of-the-art telescopes observe those regions in space where something “is happening” at the right time. A chemist explains why the battery of the future will come from a printer, and molecular biologists explain how they will breed stress-resistant plants. You will read about all this in this issue as well as about current studies on restless legs syndrome in children and the situation of Muslims in Brandenburg. Last but not least, we will introduce you to the sheep currently grazing in Sanssouci Park – all on behalf of science. Quite clever!
Enjoy your read!
THE EDITORS
02/2018
Portal Wissen = Cosmos
(2018)
Speaking of the cosmos means speaking about nothing less than everything, about the entirety of space filled with matter and energy. We only see a tiny fraction of it from Earth: planets like Venus or stars like the Sun. There are at least 100 billion stars in our home galaxy alone. Bound by gravity, these luminescent celestial bodies of very hot gas form a system visible from Earth as a whitish ribbon, which we call the Milky Way. The observable cosmos contains at least 100 billion such galaxies with stars, cosmic dust, gas, and probably dark matter as well. The universe is 13.8 billion years old; crossing it once would probably take 78 billion light-years.
Given these dimensions, it is hardly surprising that for us humans, the mystery of the properties of the cosmos is connected with questions of being. Where do we come from? Where are we going? Are we alone in the universe? Such questions are in the wheelhouse of astrophysicists, who explore the vastness of the cosmos through physical means, even though they, of course, deal with physical laws, mathematical formulas, and complicated measuring methods. In this issue of Portal Wissen, we talked with astrophysicists at the University of Potsdam about their research and everyday work.
Lutz Wisotzki showed us a 3D spectrograph, which he has developed in collaboration with colleagues from the Leibniz Institute for Astrophysics (AIP) and six other European institutes. This technical masterpiece enables scientists to look deeply into space and to “journey” through time to galaxies shortly after the Big Bang. Philipp Richter introduced us to the astrophysics research initiative and demonstrated how the University of Potsdam is working together with the AIP, the Albert Einstein Institute (AEI) and the Deutsches Elektronen-Synchrotron (DESY) to train junior researchers. The newly appointed Professor of Stellar Astrophysics, Stephan Geier, presented us with stars so close together to each other that they appear to be one to the naked eye. The physicist, who is also a historian, researches their turbulent relationships.
We have not confined ourselves to cosmic themes, though, but also questioned rather earthly matters such as modern consumption. We have thought about potential love relationships with robots and testimonials in literature and art. We learned why the rainforest in Central Africa disappeared 2,600 years ago, how to produce knee prostheses on a production line, and how animals in the field benefit from big data.
But back to the cosmos. The writing of late astrophysicist Stephen Hawking fundamentally shaped our concepts and knowledge of the universe. And that is because he was both an important physicist and a literary genius. Hardly anyone has been able to capture difficult facts in such a clear, understandable, and beautiful language. With this exemplary understanding of science in mind, we hope to offer you a stimulating read.
The Editors
01/2018
Portal Wissen = Language
(2018)
Language is perhaps the most universal tool of human beings. It enables us to express ourselves, to communicate and understand, to help and get help, to create and share togetherness.
However, that does not completely capture the value of language. “Language belongs to the character of man,” said the English philosopher Sir Francis Bacon. If you believe the poet Johann Gottfried von Herder, a human is “only a human through language”. Ultimately, this means that we live in our world not with, but in, language. We not only describe our reality by means of language, but language is the device through which we open up the world in the first place. It is always there and shapes and influences us and the way we perceive, analyze, describe and ultimately determine everything around us.
Since it is so deeply connected with human nature, it is hardly surprising that our language has always been in the center of academic research – and not only in those fields that bear the name linguistics. Philosophy and media studies, neurology and psychology, computer science and semiotics – all of them are based on linguistic structures and their premises and possibilities.
Since July 2017, a scientific network at the University of Potsdam has been working on exactly this interface: the Collaborative Research Center “Limits of Variability in Language” (SFB 1287), funded by the German Research Foundation (DFG). Linguists, computer scientists, psychologists, and neurologists examine where language is or is not flexible. They hope to find out more about individual languages and their connections.
In this issue of Portal Wissen, we asked SFB spokeswoman Isabell Wartenburger and deputy spokesman Malte Zimmermann to talk about language, its variability and limits, and how they investigate these aspects. We also look over the shoulders of two researchers who are working on sub-projects: Germanist Heike Wiese and her team examine whether the pandemonium of the many different languages spoken at a weekly market in Berlin is creating a new language with its own rules. Linguist Doreen Georgi embarks on a typological journey around the world comparing about 30 languages to find out if they have common limits.
We also want to introduce other research projects at the University of Potsdam and the people behind them. We talk to biologists about biodiversity and ecological dynamics, and the founders of the startup “visionYOU” explain how entrepreneurship can be combined with social responsibility. Other discussions center round the effective production of antibodies and the question of whether the continued use of smartphones will eventually make us speechless. But do not worry: we did not run out of words – the magazine is full of them!
Enjoy your reading!
The Editors