• Deutsch

University Logo

  • Home
  • Search
  • Browse
  • Submit
  • Sitemap
Schließen
  • Dewey Decimal Classification
  • 5 Naturwissenschaften und Mathematik
  • 57 Biowissenschaften; Biologie

570 Biowissenschaften; Biologie

Refine

Author

  • Tiedemann, Ralph (5)
  • Jeltsch, Florian (4)
  • Eccard, Jana Anja (3)
  • Gaedke, Ursula (3)
  • Hofreiter, Michael (3)
  • Barlow, Axel (2)
  • Baumann, Otto (2)
  • Grebe, Markus (2)
  • Grossart, Hans-Peter (2)
  • Kappel, Christian (2)
+ more

Year of publication

  • 2019 (12)
  • 2018 (11)
  • 2017 (4)
  • 2016 (7)
  • 2015 (11)
  • 2014 (1)
  • 2011 (1)

Document Type

  • Article (47) (remove)

Language

  • English (46)
  • German (1)

Keywords

  • Rodents (2)
  • biodiversity (2)
  • coexistence (2)
  • phylogeny (2)
  • ABC transporter (1)
  • ABCB7 (1)
  • AIP1 (1)
  • ATCUN motif (1)
  • Actin (1)
  • Actin cytoskeleton (1)
+ more

Institute

  • Institut für Biochemie und Biologie (35)
  • Institut für Chemie (4)
  • Mathematisch-Naturwissenschaftliche Fakultät (4)
  • Department Psychologie (1)
  • Institut für Erd- und Umweltwissenschaften (1)
  • Institut für Ernährungswissenschaft (1)
  • Institut für Physik und Astronomie (1)

47 search hits

  • 41 to 47
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
The complete mitochondrial genome of a European fire-bellied toad (Bombina bombina) from Germany (2019)
De Cahsan, Binia ; Westbury, Michael V ; Drews, Hauke ; Tiedemann, Ralph
The European fire-bellied toad, Bombina bombina, is a small aquatic toad belonging to the family Bombinatoridae. The species is native to the lowlands of Central and Eastern Europe, where population numbers have been in decline in recent past decades. Here, we present the first complete mitochondrial genome of the endangered European fire-bellied toad from Northern Germany recovered using iterative mapping. Phylogenetic analyses including other representatives of the Bombinatoridae placed our German specimen as sister to a Polish B. bombina sequence with high support. This finding is congruent with the postulated Pleistocene history of the species. Our complete mitochondrial genome represents an important resource for further population analysis of the European fire-bellied toad, especially those found within Germany.
The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: Arvicolinae) (2018)
Folkertsma, Remco ; Westbury, Michael V. ; Eccard, Jana Anja ; Hofreiter, Michael
The common vole, Microtus arvalis belongs to the genus Microtus in the subfamily Arvicolinae. In this study, the complete mitochondrial genome of M. arvalis was recovered using shotgun sequencing and an iterative mapping approach using three related species. Phylogenetic analyses using the sequence of 21 arvicoline species place the common vole as a sister species to the East European vole (Microtus levis), but as opposed to previous results we find no support for the recognition of the genus Neodon within the subfamily Arvicolinae, as this is, as well as the genus Lasiopodomys, found within the Microtus genus.
The Eukaryotic Life on Microplastics in Brackish Ecosystems (2019)
Kettner, Marie Therese ; Oberbeckmann, Sonja ; Labrenz, Matthias ; Grossart, Hans-Peter
Microplastics (MP) constitute a widespread contaminant all over the globe. Rivers and wastewater treatment plants (WWTP) transport annually several million tons of MP into freshwaters, estuaries and oceans, where they provide increasing artificial surfaces for microbial colonization. As knowledge on MP-attached communities is insufficient for brackish ecosystems, we conducted exposure experiments in the coastal Baltic Sea, an in-flowing river and a WWTP within the drainage basin. While reporting on prokaryotic and fungal communities from the same set-up previously, we focus here on the entire eukaryotic communities. Using high-throughput 18S rRNA gene sequencing, we analyzed the eukaryotes colonizing on two types of MP, polyethylene and polystyrene, and compared them to the ones in the surrounding water and on a natural surface (wood). More than 500 different taxa across almost all kingdoms of the eukaryotic tree of life were identified on MP, dominated by Alveolata, Metazoa, and Chloroplastida. The eukaryotic community composition on MP was significantly distinct from wood and the surrounding water, with overall lower diversity and the potentially harmful dinoflagellate Pfiesteria being enriched on MP. Co-occurrence networks, which include prokaryotic and eukaryotic taxa, hint at possibilities for dynamic microbial interactions on MP. This first report on total eukaryotic communities on MP in brackish environments highlights the complexity of MP-associated biofilms, potentially leading to altered microbial activities and hence changes in ecosystem functions.
The gonadal transcriptome of the unisexual Amazon molly Poecilia formosa in comparison to its sexual ancestors, Poecilia mexicana and Poecilia latipinna (2018)
Schedina, Ina Maria ; Groth, Detlef ; Schlupp, Ingo ; Tiedemann, Ralph
Background The unisexual Amazon molly (Poecilia formosa) originated from a hybridization between two sexual species, the sailfin molly (Poecilia latipinna) and the Atlantic molly (Poecilia mexicana). The Amazon molly reproduces clonally via sperm-dependent parthenogenesis (gynogenesis), in which the sperm of closely related species triggers embryogenesis of the apomictic oocytes, but typically does not contribute genetic material to the next generation. We compare for the first time the gonadal transcriptome of the Amazon molly to those of both ancestral species, P. mexicana and P. latipinna. Results We sequenced the gonadal transcriptomes of the P. formosa and its parental species P. mexicana and P. latipinna using Illumina RNA-sequencing techniques (paired-end, 100 bp). De novo assembly of about 50 million raw read pairs for each species was performed using Trinity, yielding 106,922 transcripts for P. formosa, 115,175 for P. latipinna, and 133,025 for P. mexicana after eliminating contaminations. On the basis of sequence similarity comparisons to other teleost species and the UniProt databases, functional annotation, and differential expression analysis, we demonstrate the similarity of the transcriptomes among the three species. More than 40% of the transcripts for each species were functionally annotated and about 70% were assigned to orthologous genes of a closely related species. Differential expression analysis between the sexual and unisexual species uncovered 2035 up-regulated and 564 down-regulated genes in P. formosa. This was exemplary validated for six genes by qRT-PCR. Conclusions We identified more than 130 genes related to meiosis and reproduction within the apomictically reproducing P. formosa. Overall expression of these genes seems to be down-regulated in the P. formosa transcriptome compared to both ancestral species (i.e., 106 genes down-regulated, 29 up-regulated). A further 35 meiosis and reproduction related genes were not found in the P. formosa transcriptome, but were only expressed in the sexual species. Our data support the hypothesis of general down-regulation of meiosis-related genes in the apomictic Amazon molly. Furthermore, the obtained dataset and identified gene catalog will serve as a resource for future research on the molecular mechanisms behind the reproductive mode of this unisexual species.
The influence of El Nino-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario (2017)
Fer, Istem ; Tietjen, Britta ; Jeltsch, Florian ; Wolff, Christian
The El Nino-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.
The Influence of Silver Nanoparticles on the Blood-Brain and the Blood-Cerebrospinal Fluid Barrier in vitro (2014)
Cramer, Sandra ; Tacke, Sebastian ; Bornhorst, Julia ; Klingauf, Jürgen ; Schwerdtle, Tanja ; Galla, Hans-Joachim
The use of silver nanoparticles in medical and consumer products such as wound dressings, clothing and cosmetic has increased significantly in recent years. Still, the influence of these particles on our health and especially on our brain, has not been examined adequately up to now. We studied the influence of AgEO- (Ethylene Oxide) and AgCitrate-Nanoparticles (NPs) on the protective barriers of the brain, namely the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (blood-CSF) barrier in vitro. The NPs toxicity was evaluated by examining changes in membrane integrity, cell morphology, barrier properties, oxidative stress and inflammatory reactions. AgNPs decreased cell viability, disturbed barrier integrity and tight junctions and triggered oxidative stress and DNA strand breaks. However, all mentioned effects were, at least partly, suppressed by a Citrate-coating and were most pronounced in the cells of the BBB as compared to the epithelial cells representing the blood-CSF barrier. AgEO- but not AgCitrate-NPs also triggered an inflammatory reaction in porcine brain capillary endothelial cells (PBCEC), which represent the BBB. Our data indicate that AgNPs may cause adverse effects within the barriers of the brain, but their toxicity can be reduced by choosing an appropriate coating material.
Trait adaptation promotes species coexistence in diverse predator and prey communities (2016)
Klauschies, Toni ; Vasseur, David A. ; Gaedke, Ursula
Species can adjust their traits in response to selection which may strongly influence species coexistence. Nevertheless, current theory mainly assumes distinct and time-invariant trait values. We examined the combined effects of the range and the speed of trait adaptation on species coexistence using an innovative multispecies predator–prey model. It allows for temporal trait changes of all predator and prey species and thus simultaneous coadaptation within and among trophic levels. We show that very small or slow trait adaptation did not facilitate coexistence because the stabilizing niche differences were not sufficient to offset the fitness differences. In contrast, sufficiently large and fast trait adaptation jointly promoted stable or neutrally stable species coexistence. Continuous trait adjustments in response to selection enabled a temporally variable convergence and divergence of species traits; that is, species became temporally more similar (neutral theory) or dissimilar (niche theory) depending on the selection pressure, resulting over time in a balance between niche differences stabilizing coexistence and fitness differences promoting competitive exclusion. Furthermore, coadaptation allowed prey and predator species to cluster into different functional groups. This equalized the fitness of similar species while maintaining sufficient niche differences among functionally different species delaying or preventing competitive exclusion. In contrast to pre- vious studies, the emergent feedback between biomass and trait dynamics enabled supersaturated coexistence for a broad range of potential trait adaptation and parameters. We conclude that accounting for trait adaptation may explain stable and supersaturated species coexistence for a broad range of environmental conditions in natural systems when the absence of such adaptive changes would preclude it. Small trait changes, coincident with those that may occur within many natural populations, greatly enlarged the number of coexisting species.
  • 41 to 47

OPUS4 Logo  KOBV Logo  OAI Logo  DINI Zertifikat 2007  OA Netzwerk Logo

  • Institutional Repository
  • University Press
  • University Bibliography
  • University Library
  • Policy
  • Contact
  • Disclaimer
  • Imprint
  • Datenschutzerklärung

Login