## 530 Physik

The occurrence of earthquakes is characterized by a high degree of spatiotemporal complexity. Although numerous patterns, e.g. fore- and aftershock sequences, are well-known, the underlying mechanisms are not observable and thus not understood. Because the recurrence times of large earthquakes are usually decades or centuries, the number of such events in corresponding data sets is too small to draw conclusions with reasonable statistical significance. Therefore, the present study combines both, numerical modeling and analysis of real data in order to unveil the relationships between physical mechanisms and observational quantities. The key hypothesis is the validity of the so-called "critical point concept" for earthquakes, which assumes large earthquakes to occur as phase transitions in a spatially extended many-particle system, similar to percolation models. New concepts are developed to detect critical states in simulated and in natural data sets. The results indicate that important features of seismicity like the frequency-size distribution and the temporal clustering of earthquakes depend on frictional and structural fault parameters. In particular, the degree of quenched spatial disorder (the "roughness") of a fault zone determines whether large earthquakes occur quasiperiodically or more clustered. This illustrates the power of numerical models in order to identify regions in parameter space, which are relevant for natural seismicity. The critical point concept is verified for both, synthetic and natural seismicity, in terms of a critical state which precedes a large earthquake: a gradual roughening of the (unobservable) stress field leads to a scale-free (observable) frequency-size distribution. Furthermore, the growth of the spatial correlation length and the acceleration of the seismic energy release prior to large events is found. The predictive power of these precursors is, however, limited. Instead of forecasting time, location, and magnitude of individual events, a contribution to a broad multiparameter approach is encouraging.

In a classical context, synchronization means adjustment of rhythms of self-sustained periodic oscillators due to their weak interaction. The history of synchronization goes back to the 17th century when the famous Dutch scientist Christiaan Huygens reported on his observation of synchronization of pendulum clocks: when two such clocks were put on a common support, their pendula moved in a perfect agreement. In rigorous terms, it means that due to coupling the clocks started to oscillate with identical frequencies and tightly related phases. Being, probably, the oldest scientifically studied nonlinear effect, synchronization was understood only in 1920-ies when E. V. Appleton and B. Van der Pol systematically - theoretically and experimentally - studied synchronization of triode generators. Since that the theory was well developed and found many applications. Nowadays it is well-known that certain systems, even rather simple ones, can exhibit chaotic behaviour. It means that their rhythms are irregular, and cannot be characterized only by one frequency. However, as is shown in the Habilitation work, one can extend the notion of phase for systems of this class as well and observe their synchronization, i.e., agreement of their (still irregular!) rhythms: due to very weak interaction there appear relations between the phases and average frequencies. This effect, called phase synchronization, was later confirmed in laboratory experiments of other scientific groups. Understanding of synchronization of irregular oscillators allowed us to address important problem of data analysis: how to reveal weak interaction between the systems if we cannot influence them, but can only passively observe, measuring some signals. This situation is very often encountered in biology, where synchronization phenomena appear on every level - from cells to macroscopic physiological systems; in normal states as well as in severe pathologies. With our methods we found that cardiovascular and respiratory systems in humans can adjust their rhythms; the strength of their interaction increases with maturation. Next, we used our algorithms to analyse brain activity of Parkinsonian patients. The results of this collaborative work with neuroscientists show that different brain areas synchronize just before the onset of pathological tremor. Morevoever, we succeeded in localization of brain areas responsible for tremor generation.