## 530 Physik

### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (10)
- Habilitation (1)
- Master's Thesis (1)

#### Keywords

- synchronization (12) (remove)

The mammalian brain is, with its numerous neural elements and structured complex connectivity, one of the most complex systems in nature. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex networks. Here, we try to shed some light on the relationship between structural and functional connectivities by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the cortical areas by a subnetwork of interacting excitable neurons (multilevel model) and by a neural mass model (population model). With weak couplings, the multilevel model displays biologically plausible dynamics and the synchronization patterns reveal a hierarchical cluster organization in the network structure. We can identify a group of brain areas involved in multifunctional tasks by comparing the dynamical clusters to the topological communities of the network. With strong couplings of multilevel model and by using neural mass model, the dynamics are characterized by well-defined oscillations. The synchronization patterns are mainly determined by the node intensity (total input strengths of a node); the detailed network topology is of secondary importance. The biologically improved multilevel model exhibits similar dynamical patterns in the two regimes. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

Synchronization is a fundamental phenomenon in nature. It can be considered as a general property of self-sustained oscillators to adjust their rhythm in the presence of an interaction.
In this work we investigate complex regimes of synchronization phenomena by means of theoretical analysis, numerical modeling, as well as practical analysis of experimental data.
As a subject of our investigation we consider chimera state, where due to spontaneous symmetry-breaking of an initially homogeneous oscillators lattice split the system into two parts with different dynamics. Chimera state as a new synchronization phenomenon was first found in non-locally coupled oscillators system, and has attracted a lot of attention in the last decade. However, the recent studies indicate that this state is also possible in globally coupled systems. In the first part of this work, we show under which conditions the chimera-like state appears in a system of globally coupled identical oscillators with intrinsic delayed feedback. The results of the research explain how initially monostable oscillators became effectivly bistable in the presence of the coupling and create a mean field that sustain the coexistence of synchronized and desynchronized states. Also we discuss other examples, where chimera-like state appears due to frequency dependence of the phase shift in the bistable system.
In the second part, we make further investigation of this topic by modeling influence of an external periodic force to an oscillator with intrinsic delayed feedback. We made stability analysis of the synchronized state and constructed Arnold tongues. The results explain formation of the chimera-like state and hysteric behavior of the synchronization area. Also, we consider two sets of parameters of the oscillator with symmetric and asymmetric Arnold tongues, that correspond to mono- and bi-stable regimes of the oscillator.
In the third part, we demonstrate the results of the work, which was done in collaboration with our colleagues from Psychology Department of University of Potsdam. The project aimed to study the effect of the cardiac rhythm on human perception of time using synchronization analysis. From our part, we made a statistical analysis of the data obtained from the conducted experiment on free time interval reproduction task. We examined how ones heartbeat influences the time perception and searched for possible phase synchronization between heartbeat cycles and time reproduction responses. The findings support the prediction that cardiac cycles can serve as input signals, and is used for reproduction of time intervals in the range of several seconds.

Synchronization of large ensembles of oscillators is an omnipresent phenomenon observed in different fields of science like physics, engineering, life sciences, etc. The most simple setup is that of globally coupled phase oscillators, where all the oscillators contribute to a global field which acts on all oscillators. This formulation of the problem was pioneered by Winfree and Kuramoto. Such a setup gives a possibility for the analysis of these systems in terms of global variables. In this work we describe nontrivial collective dynamics in oscillator populations coupled via mean fields in terms of global variables. We consider problems which cannot be directly reduced to standard Kuramoto and Winfree models.
In the first part of the thesis we adopt a method introduced by Watanabe and Strogatz. The main idea is that the system of identical oscillators of particular type can be described by a low-dimensional system of global equations. This approach enables us to perform a complete analytical analysis for a special but vast set of initial conditions. Furthermore, we show how the approach can be expanded for some nonidentical systems. We apply the Watanabe-Strogatz approach to arrays of Josephson junctions and systems of identical phase oscillators with leader-type coupling.
In the next parts of the thesis we consider the self-consistent mean-field theory method that can be applied to general nonidentical globally coupled systems of oscillators both with or without noise. For considered systems a regime, where the global field rotates uniformly, is the most important one. With the help of this approach such solutions of the self-consistency equation for an arbitrary distribution of frequencies and coupling parameters can be found analytically in the parametric form, both for noise-free and noisy cases.
We apply this method to deterministic Kuramoto-type model with generic coupling and an ensemble of spatially distributed oscillators with leader-type coupling. Furthermore, with the proposed self-consistent approach we fully characterize rotating wave solutions of noisy Kuramoto-type model with generic coupling and an ensemble of noisy oscillators with bi-harmonic coupling.
Whenever possible, a complete analysis of global dynamics is performed and compared with direct numerical simulations of large populations.

This work is concerned with the spatio-temporal structures that emerge when non-identical, diffusively coupled oscillators synchronize. It contains analytical results and their confirmation through extensive computer simulations. We use the Kuramoto model which reduces general oscillatory systems to phase dynamics. The symmetry of the coupling plays an important role for the formation of patterns. We have studied the ordering influence of an asymmetry (non-isochronicity) in the phase coupling function on the phase profile in synchronization and the intricate interplay between this asymmetry and the frequency heterogeneity in the system. The thesis is divided into three main parts. Chapter 2 and 3 introduce the basic model of Kuramoto and conditions for stable synchronization. In Chapter 4 we characterize the phase profiles in synchronization for various special cases and in an exponential approximation of the phase coupling function, which allows for an analytical treatment. Finally, in the third part (Chapter 5) we study the influence of non-isochronicity on the synchronization frequency in continuous, reaction diffusion systems and discrete networks of oscillators.

Subject of this work is the investigation of generic synchronization phenomena in interacting complex systems. These phenomena are observed, among all, in coupled deterministic chaotic systems. At very weak interactions between individual systems a transition to a weakly coherent behavior of the systems can take place. In coupled continuous time chaotic systems this transition manifests itself with the effect of phase synchronization, in coupled chaotic discrete time systems with the effect of non-vanishing macroscopic mean field. Transition to coherence in a chain of locally coupled oscillators described with phase equations is investigated with respect to the symmetries in the system. It is shown that the reversibility of the system caused by these symmetries results to non-trivial topological properties of trajectories so that the system constructed to be dissipative reveals in a whole parameter range quasi-Hamiltonian features, i.e. the phase volume is conserved on average and Lyapunov exponents come in symmetric pairs. Transition to coherence in an ensemble of globally coupled chaotic maps is described with the loss of stability of the disordered state. The method is to break the self-consistensy of the macroscopic field and to characterize the ensemble in analogy to an amplifier circuit with feedback with a complex linear transfer function. This theory is then generalized for several cases of theoretic interest.

In a classical context, synchronization means adjustment of rhythms of self-sustained periodic oscillators due to their weak interaction. The history of synchronization goes back to the 17th century when the famous Dutch scientist Christiaan Huygens reported on his observation of synchronization of pendulum clocks: when two such clocks were put on a common support, their pendula moved in a perfect agreement. In rigorous terms, it means that due to coupling the clocks started to oscillate with identical frequencies and tightly related phases. Being, probably, the oldest scientifically studied nonlinear effect, synchronization was understood only in 1920-ies when E. V. Appleton and B. Van der Pol systematically - theoretically and experimentally - studied synchronization of triode generators. Since that the theory was well developed and found many applications. Nowadays it is well-known that certain systems, even rather simple ones, can exhibit chaotic behaviour. It means that their rhythms are irregular, and cannot be characterized only by one frequency. However, as is shown in the Habilitation work, one can extend the notion of phase for systems of this class as well and observe their synchronization, i.e., agreement of their (still irregular!) rhythms: due to very weak interaction there appear relations between the phases and average frequencies. This effect, called phase synchronization, was later confirmed in laboratory experiments of other scientific groups. Understanding of synchronization of irregular oscillators allowed us to address important problem of data analysis: how to reveal weak interaction between the systems if we cannot influence them, but can only passively observe, measuring some signals. This situation is very often encountered in biology, where synchronization phenomena appear on every level - from cells to macroscopic physiological systems; in normal states as well as in severe pathologies. With our methods we found that cardiovascular and respiratory systems in humans can adjust their rhythms; the strength of their interaction increases with maturation. Next, we used our algorithms to analyse brain activity of Parkinsonian patients. The results of this collaborative work with neuroscientists show that different brain areas synchronize just before the onset of pathological tremor. Morevoever, we succeeded in localization of brain areas responsible for tremor generation.

Synchronization – the adjustment of rhythms among coupled self-oscillatory systems – is a fascinating dynamical phenomenon found in many biological, social, and technical systems.
The present thesis deals with synchronization in finite ensembles of weakly coupled self-sustained oscillators with distributed frequencies.
The standard model for the description of this collective phenomenon is the Kuramoto model – partly due to its analytical tractability in the thermodynamic limit of infinitely many oscillators. Similar to a phase transition in the thermodynamic limit, an order parameter indicates the transition from incoherence to a partially synchronized state. In the latter, a part of the oscillators rotates at a common frequency. In the finite case, fluctuations occur, originating from the quenched noise of the finite natural frequency sample.
We study intermediate ensembles of a few hundred oscillators in which fluctuations are comparably strong but which also allow for a comparison to frequency distributions in the infinite limit.
First, we define an alternative order parameter for the indication of a collective mode in the finite case. Then we test the dependence of the degree of synchronization and the mean rotation frequency of the collective mode on different characteristics for different coupling strengths.
We find, first numerically, that the degree of synchronization depends strongly on the form (quantified by kurtosis) of the natural frequency sample and the rotation frequency of the collective mode depends on the asymmetry (quantified by skewness) of the sample. Both findings are verified in the infinite limit.
With these findings, we better understand and generalize observations of other authors. A bit aside of the general line of thoughts, we find an analytical expression for the volume contraction in phase space.
The second part of this thesis concentrates on an ordering effect of the finite-size fluctuations. In the infinite limit, the oscillators are separated into coherent and incoherent thus ordered and disordered oscillators. In finite ensembles, finite-size fluctuations can generate additional order among the asynchronous oscillators. The basic principle – noise-induced synchronization – is known from several recent papers. Among coupled oscillators, phases are pushed together by the order parameter fluctuations, as we on the one hand show directly and on the other hand quantify with a synchronization measure from directed statistics between pairs of passive oscillators.
We determine the dependence of this synchronization measure from the ratio of pairwise natural frequency difference and variance of the order parameter fluctuations. We find a good agreement with a simple analytical model, in which we replace the deterministic fluctuations of the order parameter by white noise.

In dieser Arbeit werden nichtlineare Kopplungsmechanismen von akustischen Oszillatoren untersucht, die zu Synchronisation führen können. Aufbauend auf die Fragestellungen vorangegangener Arbeiten werden mit Hilfe theoretischer und experimenteller Studien sowie mit Hilfe numerischer Simulationen die Elemente der Tonentstehung in der Orgelpfeife und die Mechanismen der gegenseitigen Wechselwirkung von Orgelpfeifen identifiziert. Daraus wird erstmalig ein vollständig auf den aeroakustischen und fluiddynamischen Grundprinzipien basierendes nichtlinear gekoppeltes Modell selbst-erregter Oszillatoren für die Beschreibung des Verhaltens zweier wechselwirkender Orgelpfeifen entwickelt. Die durchgeführten Modellrechnungen werden mit den experimentellen Befunden verglichen. Es zeigt sich, dass die Tonentstehung und die Kopplungsmechanismen von Orgelpfeifen durch das entwickelte Oszillatormodell in weiten Teilen richtig beschrieben werden. Insbesondere kann damit die Ursache für den nichtlinearen Zusammenhang von Kopplungsstärke und Synchronisation des gekoppelten Zwei-Pfeifen Systems, welcher sich in einem nichtlinearen Verlauf der Arnoldzunge darstellt, geklärt werden. Mit den gewonnenen Erkenntnissen wird der Einfluss des Raumes auf die Tonentstehung bei Orgelpfeifen betrachtet. Dafür werden numerische Simulationen der Wechselwirkung einer Orgelpfeife mit verschiedenen Raumgeometrien, wie z. B. ebene, konvexe, konkave, und gezahnte Geometrien, exemplarisch untersucht. Auch der Einfluss von Schwellkästen auf die Tonentstehung und die Klangbildung der Orgelpfeife wird studiert. In weiteren, neuartigen Synchronisationsexperimenten mit identisch gestimmten Orgelpfeifen, sowie mit Mixturen wird die Synchronisation für verschiedene, horizontale und vertikale Pfeifenabstände in der Ebene der Schallabstrahlung, untersucht. Die dabei erstmalig beobachteten räumlich isotropen Unstetigkeiten im Schwingungsverhalten der gekoppelten Pfeifensysteme, deuten auf abstandsabhängige Wechsel zwischen gegen- und gleichphasigen Sychronisationsregimen hin. Abschließend wird die Möglichkeit dokumentiert, das Phänomen der Synchronisation zweier Orgelpfeifen durch numerische Simulationen, also der Behandlung der kompressiblen Navier-Stokes Gleichungen mit entsprechenden Rand- und Anfangsbedingungen, realitätsnah abzubilden. Auch dies stellt ein Novum dar.

In dieser Arbeit werden die Effekte der Synchronisation nichtlinearer, akustischer Oszillatoren am Beispiel zweier Orgelpfeifen untersucht. Aus vorhandenen, experimentellen Messdaten werden die typischen Merkmale der Synchronisation extrahiert und dargestellt. Es folgt eine detaillierte Analyse der Übergangsbereiche in das Synchronisationsplateau, der Phänomene während der Synchronisation, als auch das Austreten aus der Synchronisationsregion beider Orgelpfeifen, bei verschiedenen Kopplungsstärken. Die experimentellen Befunde werfen Fragestellungen nach der Kopplungsfunktion auf. Dazu wird die Tonentstehung in einer Orgelpfeife untersucht. Mit Hilfe von numerischen Simulationen der Tonentstehung wird der Frage nachgegangen, welche fluiddynamischen und aero-akustischen Ursachen die Tonentstehung in der Orgelpfeife hat und inwiefern sich die Mechanismen auf das Modell eines selbsterregten akustischen Oszillators abbilden lässt. Mit der Methode des Coarse Graining wird ein Modellansatz formuliert.

In the present work synchronization phenomena in complex dynamical systems exhibiting multiple time scales have been analyzed. Multiple time scales can be active in different manners. Three different systems have been analyzed with different methods from data analysis. The first system studied is a large heterogenous network of bursting neurons, that is a system with two predominant time scales, the fast firing of action potentials (spikes) and the burst of repetitive spikes followed by a quiescent phase. This system has been integrated numerically and analyzed with methods based on recurrence in phase space. An interesting result are the different transitions to synchrony found in the two distinct time scales. Moreover, an anomalous synchronization effect can be observed in the fast time scale, i.e. there is range of the coupling strength where desynchronization occurs. The second system analyzed, numerically as well as experimentally, is a pair of coupled CO₂ lasers in a chaotic bursting regime. This system is interesting due to its similarity with epidemic models. We explain the bursts by different time scales generated from unstable periodic orbits embedded in the chaotic attractor and perform a synchronization analysis of these different orbits utilizing the continuous wavelet transform. We find a diverse route to synchrony of these different observed time scales. The last system studied is a small network motif of limit cycle oscillators. Precisely, we have studied a hub motif, which serves as elementary building block for scale-free networks, a type of network found in many real world applications. These hubs are of special importance for communication and information transfer in complex networks. Here, a detailed study on the mechanism of synchronization in oscillatory networks with a broad frequency distribution has been carried out. In particular, we find a remote synchronization of nodes in the network which are not directly coupled. We also explain the responsible mechanism and its limitations and constraints. Further we derive an analytic expression for it and show that information transmission in pure phase oscillators, such as the Kuramoto type, is limited. In addition to the numerical and analytic analysis an experiment consisting of electrical circuits has been designed. The obtained results confirm the former findings.