## Institut für Physik und Astronomie

We consider an autonomous system of partial differential equations for a one-dimensional distributed medium with periodic boundary conditions. Dynamics in time consists of alternating birth and death of patterns with spatial phases transformed from one stage of activity to another by the doubly expanding circle map. So, the attractor in the Poincar, section is uniformly hyperbolic, a kind of Smale - Williams solenoid. Finite-dimensional models are derived as ordinary differential equations for amplitudes of spatial Fourier modes (the 5D and 7D models). Correspondence of the reduced models to the original system is demonstrated numerically. Computational verification of the hyperbolicity criterion is performed for the reduced models: the distribution of angles of intersection for stable and unstable manifolds on the attractor is separated from zero, i.e., the touches are excluded. The example considered gives a partial justification for the old hopes that the chaotic behavior of autonomous distributed systems may be associated with uniformly hyperbolic attractors.

We report spatiotemporal chaos in the Oregonator model of the Belousov-Zhabotinsky reaction. Spatiotemporal chaos spontaneously develops in a regime, where the underlying local dynamics show stable limit cycle oscillations (diffusion-induced turbulence). We show that spatiotemporal chaos can be suppressed by a unidirectional flow in the system. With increasing flow velocity, we observe a transition scenario from spatiotemporal chaos via a regime of travelling waves to a stationary steady state. At large flow velocities, we recover the known regime of flow distributed oscillations.

This work investigates diffusion in nonlinear Hamiltonian systems. The diffusion, more precisely subdiffusion, in such systems is induced by the intrinsic chaotic behavior of trajectories and thus is called chaotic diffusion''. Its properties are studied on the example of one- or two-dimensional lattices of harmonic or nonlinear oscillators with nearest neighbor couplings. The fundamental observation is the spreading of energy for localized initial conditions. Methods of quantifying this spreading behavior are presented, including a new quantity called excitation time. This new quantity allows for a more precise analysis of the spreading than traditional methods. Furthermore, the nonlinear diffusion equation is introduced as a phenomenologic description of the spreading process and a number of predictions on the density dependence of the spreading are drawn from this equation. Two mathematical techniques for analyzing nonlinear Hamiltonian systems are introduced. The first one is based on a scaling analysis of the Hamiltonian equations and the results are related to similar scaling properties of the NDE. From this relation, exact spreading predictions are deduced. Secondly, the microscopic dynamics at the edge of spreading states are thoroughly analyzed, which again suggests a scaling behavior that can be related to the NDE. Such a microscopic treatment of chaotically spreading states in nonlinear Hamiltonian systems has not been done before and the results present a new technique of connecting microscopic dynamics with macroscopic descriptions like the nonlinear diffusion equation. All theoretical results are supported by heavy numerical simulations, partly obtained on one of Europe's fastest supercomputers located in Bologna, Italy. In the end, the highly interesting case of harmonic oscillators with random frequencies and nonlinear coupling is studied, which resembles to some extent the famous Discrete Anderson Nonlinear Schroedinger Equation. For this model, a deviation from the widely believed power-law spreading is observed in numerical experiments. Some ideas on a theoretical explanation for this deviation are presented, but a conclusive theory could not be found due to the complicated phase space structure in this case. Nevertheless, it is hoped that the techniques and results presented in this work will help to eventually understand this controversely discussed case as well.

In this thesis, dynamical structures and manifolds in closed chaotic flows will be investigated. The knowledge about the dynamical structures (and manifolds) of a system is of importance, since they provide us first information about the dynamics of the system - means, with their help we are able to characterize the flow and maybe even to forecast it`s dynamics. The visualization of such structures in closed chaotic flows is a difficult and often long-lasting process. Here, the so-called 'Leaking-method' will be introduced, in examples of simple mathematical maps as the baker- or sine-map, with which we are able to visualize subsets of the manifolds of the system`s chaotic saddle. Comparisons between the visualized manifolds and structures traced out by chemical or biological reactions superimposed on the same flow will be done in the example of a kinematic model of the Gulf Stream. It will be shown that with the help of the leaking method dynamical structures can be also visualized in environmental systems. In the example of a realistic model of the Mediterranean Sea, the leaking method will be extended to the 'exchange-method'. The exchange method allows us to characterize transport between two regions, to visualize transport routes and their exchange sets and to calculate the exchange times. Exchange times and sets will be shown and calculated for a northern and southern region in the western basin of the Mediterranean Sea. Furthermore, mixing properties in the Earth mantle will be characterized and geometrical properties of manifolds in a 3dimensional mathematical model (ABC map) will be investigated.

One of the most striking features of ecological systems is their ability to undergo sudden outbreaks in the population numbers of one or a small number of species. The similarity of outbreak characteristics, which is exhibited in totally different and unrelated (ecological) systems naturally leads to the question whether there are universal mechanisms underlying outbreak dynamics in Ecology. It will be shown into two case studies (dynamics of phytoplankton blooms under variable nutrients supply and spread of epidemics in networks of cities) that one explanation for the regular recurrence of outbreaks stems from the interaction of the natural systems with periodical variations of their environment. Natural aquatic systems like lakes offer very good examples for the annual recurrence of outbreaks in Ecology. The idea whether chaos is responsible for the irregular heights of outbreaks is central in the domain of ecological modeling. This question is investigated in the context of phytoplankton blooms. The dynamics of epidemics in networks of cities is a problem which offers many ecological and theoretical aspects. The coupling between the cities is introduced through their sizes and gives rise to a weighted network which topology is generated from the distribution of the city sizes. We examine the dynamics in this network and classified the different possible regimes. It could be shown that a single epidemiological model can be reduced to a one-dimensional map. We analyze in this context the dynamics in networks of weighted maps. The coupling is a saturation function which possess a parameter which can be interpreted as an effective temperature for the network. This parameter allows to vary continously the network topology from global coupling to hierarchical network. We perform bifurcation analysis of the global dynamics and succeed to construct an effective theory explaining very well the behavior of the system.

This work incorporates three treatises which are commonly concerned with a stochastic theory of the Lyapunov exponents. With the help of this theory universal scaling laws are investigated which appear in coupled chaotic and disordered systems. First, two continuous-time stochastic models for weakly coupled chaotic systems are introduced to study the scaling of the Lyapunov exponents with the coupling strength (coupling sensitivity of chaos). By means of the the Fokker-Planck formalism scaling relations are derived, which are confirmed by results of numerical simulations. Next, coupling sensitivity is shown to exist for coupled disordered chains, where it appears as a singular increase of the localization length. Numerical findings for coupled Anderson models are confirmed by analytic results for coupled continuous-space Schrödinger equations. The resulting scaling relation of the localization length resembles the scaling of the Lyapunov exponent of coupled chaotic systems. Finally, the statistics of the exponential growth rate of the linear oscillator with parametric noise are studied. It is shown that the distribution of the finite-time Lyapunov exponent deviates from a Gaussian one. By means of the generalized Lyapunov exponents the parameter range is determined where the non-Gaussian part of the distribution is significant and multiscaling becomes essential.

Subject of this work is the investigation of generic synchronization phenomena in interacting complex systems. These phenomena are observed, among all, in coupled deterministic chaotic systems. At very weak interactions between individual systems a transition to a weakly coherent behavior of the systems can take place. In coupled continuous time chaotic systems this transition manifests itself with the effect of phase synchronization, in coupled chaotic discrete time systems with the effect of non-vanishing macroscopic mean field. Transition to coherence in a chain of locally coupled oscillators described with phase equations is investigated with respect to the symmetries in the system. It is shown that the reversibility of the system caused by these symmetries results to non-trivial topological properties of trajectories so that the system constructed to be dissipative reveals in a whole parameter range quasi-Hamiltonian features, i.e. the phase volume is conserved on average and Lyapunov exponents come in symmetric pairs. Transition to coherence in an ensemble of globally coupled chaotic maps is described with the loss of stability of the disordered state. The method is to break the self-consistensy of the macroscopic field and to characterize the ensemble in analogy to an amplifier circuit with feedback with a complex linear transfer function. This theory is then generalized for several cases of theoretic interest.

Subject of this work is the investigation of universal scaling laws which are observed in coupled chaotic systems. Progress is made by replacing the chaotic fluctuations in the perturbation dynamics by stochastic processes. First, a continuous-time stochastic model for weakly coupled chaotic systems is introduced to study the scaling of the Lyapunov exponents with the coupling strength (coupling sensitivity of chaos). By means of the the Fokker-Planck equation scaling relations are derived, which are confirmed by results of numerical simulations. Next, the new effect of avoided crossing of Lyapunov exponents of weakly coupled disordered chaotic systems is described, which is qualitatively similar to the energy level repulsion in quantum systems. Using the scaling relations obtained for the coupling sensitivity of chaos, an asymptotic expression for the distribution function of small spacings between Lyapunov exponents is derived and compared with results of numerical simulations. Finally, the synchronization transition in strongly coupled spatially extended chaotic systems is shown to resemble a continuous phase transition, with the coupling strength and the synchronization error as control and order parameter, respectively. Using results of numerical simulations and theoretical considerations in terms of a multiplicative noise partial differential equation, the universality classes of the observed two types of transition are determined (Kardar-Parisi-Zhang equation with saturating term, directed percolation).