## Institut für Physik und Astronomie

### Refine

#### Document Type

- Doctoral Thesis (3)
- Habilitation (2)

#### Keywords

- Stochastische Prozesse (5) (remove)

Proteins are chain molecules built from amino acids. The precise sequence of the 20 different types of amino acids in a protein chain defines into which structure a protein folds, and the three-dimensional structure in turn specifies the biological function of the protein. The reliable folding of proteins is a prerequisite for their robust function. Misfolding can lead to protein aggregates that cause severe diseases, such as Alzheimer's, Parkinson's, or the variant Creutzfeldt-Jakob disease. Small single-domain proteins often fold without experimentally detectable metastable intermediate states. The folding dynamics of these proteins is thought to be governed by a single transition-state barrier between the unfolded and the folded state. The transition state is highly instable and cannot be observed directly. However, mutations in which a single amino acid of the protein is substituted by another one can provide indirect access. The mutations slightly change the transition-state barrier and, thus, the folding and unfolding times of the protein. The central question is how to reconstruct the transition state from the observed changes in folding times. In this habilitation thesis, a novel method to extract structural information on transition states from mutational data is presented. The method is based on (i) the cooperativity of structural elements such as alpha-helices and beta-hairpins, and (ii) on splitting up mutation-induced free-energy changes into components for these elements. By fitting few parameters, the method reveals the degree of structure formation of alpha-helices and beta-hairpins in the transition state. In addition, it is shown in this thesis that the folding routes of small single-domain proteins are dominated by loop-closure dependencies between the structural elements.

<img src="http://vg00.met.vgwort.de/na/806c85cec18906a64e06" width="1" height="1" alt=""> Subject of this work is the possibility to synchronize nonlinear systems via correlated noise and automatic control. The thesis is divided into two parts. The first part is motivated by field studies on feral sheep populations on two islands of the St. Kilda archipelago, which revealed strong correlations due to environmental noise. For a linear system the population correlation equals the noise correlation (Moran effect). But there exists no systematic examination of the properties of nonlinear maps under the influence of correlated noise. Therefore, in the first part of this thesis the noise-induced correlation of logistic maps is systematically examined. For small noise intensities it can be shown analytically that the correlation of quadratic maps in the fixed-point regime is always smaller than or equal to the noise correlation. In the period-2 regime a Markov model explains qualitatively the main dynamical characteristics. Furthermore, two different mechanisms are introduced which lead to a higher correlation of the systems than the environmental correlation. The new effect of "correlation resonance" is described, i. e. the correlation yields a maximum depending on the noise intensity. In the second part of the thesis an automatic control method is presented which synchronizes different systems in a robust way. This method is inspired by phase-locked loops and is based on a feedback loop with a differential control scheme, which allows to change the phases of the controlled systems. The effectiveness of the approach is demonstrated for controlled phase synchronization of regular oscillators and foodweb models.

My thesis is concerned with several new noise-induced phenomena in excitable neural models, especially those with FitzHugh-Nagumo dynamics. In these effects the fluctuations intrinsically present in any complex neural network play a constructive role and improve functionality. I report the occurrence of Vibrational Resonance in excitable systems. Both in an excitable electronic circuit and in the FitzHugh-Nagumo model, I show that an optimal amplitude of high-frequency driving enhances the response of an excitable system to a low-frequency signal. Additionally, the influence of additive noise and the interplay between Stochastic and Vibrational Resonance is analyzed. Further, I study systems which combine both oscillatory and excitable properties, and hence intrinsically possess two internal frequencies. I show that in such a system the effect of Stochastic Resonance can be amplified by an additional high-frequency signal which is in resonance with the oscillatory frequency. This amplification needs much lower noise intensities than for conventional Stochastic Resonance in excitable systems. I study frequency selectivity in noise-induced subthreshold signal processing in a system with many noise-supported stochastic attractors. I show that the response of the coupled elements at different noise levels can be significantly enhanced or reduced by forcing some elements into resonance with these new frequencies which correspond to appropriate phase-relations. A noise-induced phase transition to excitability is reported in oscillatory media with FitzHugh-Nagumo dynamics. This transition takes place via noise-induced stabilization of a deterministically unstable fixed point of the local dynamics, while the overall phase-space structure of the system is maintained. The joint action of coupling and noise leads to a different type of phase transition and results in a stabilization of the system. The resulting noise-induced regime is shown to display properties characteristic of excitable media, such as Stochastic Resonance and wave propagation. This effect thus allows the transmission of signals through an otherwise globally oscillating medium. In particular, these theoretical findings suggest a possible mechanism for suppressing undesirable global oscillations in neural networks (which are usually characteristic of abnormal medical conditions such as Parkinson′s disease or epilepsy), using the action of noise to restore excitability, which is the normal state of neuronal ensembles.

Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences.

Subject of this work is the investigation of universal scaling laws which are observed in coupled chaotic systems. Progress is made by replacing the chaotic fluctuations in the perturbation dynamics by stochastic processes. First, a continuous-time stochastic model for weakly coupled chaotic systems is introduced to study the scaling of the Lyapunov exponents with the coupling strength (coupling sensitivity of chaos). By means of the the Fokker-Planck equation scaling relations are derived, which are confirmed by results of numerical simulations. Next, the new effect of avoided crossing of Lyapunov exponents of weakly coupled disordered chaotic systems is described, which is qualitatively similar to the energy level repulsion in quantum systems. Using the scaling relations obtained for the coupling sensitivity of chaos, an asymptotic expression for the distribution function of small spacings between Lyapunov exponents is derived and compared with results of numerical simulations. Finally, the synchronization transition in strongly coupled spatially extended chaotic systems is shown to resemble a continuous phase transition, with the coupling strength and the synchronization error as control and order parameter, respectively. Using results of numerical simulations and theoretical considerations in terms of a multiplicative noise partial differential equation, the universality classes of the observed two types of transition are determined (Kardar-Parisi-Zhang equation with saturating term, directed percolation).