## Institut für Physik und Astronomie

In the present dissertation paper we study problems related to synchronization phenomena in the presence of noise which unavoidably appears in real systems. One part of the work is aimed at investigation of utilizing delayed feedback to control properties of diverse chaotic dynamic and stochastic systems, with emphasis on the ones determining predisposition to synchronization. Other part deals with a constructive role of noise, i.e. its ability to synchronize identical self-sustained oscillators. First, we demonstrate that the coherence of a noisy or chaotic self-sustained oscillator can be efficiently controlled by the delayed feedback. We develop the analytical theory of this effect, considering noisy systems in the Gaussian approximation. Possible applications of the effect for the synchronization control are also discussed. Second, we consider synchrony of limit cycle systems (in other words, self-sustained oscillators) driven by identical noise. For weak noise and smooth systems we proof the purely synchronizing effect of noise. For slightly different oscillators and/or slightly nonidentical driving, synchrony becomes imperfect, and this subject is also studied. Then, with numerics we show moderate noise to be able to lead to desynchronization of some systems under certain circumstances. For neurons the last effect means “antireliability” (the “reliability” property of neurons is treated to be important from the viewpoint of information transmission functions), and we extend our investigation to neural oscillators which are not always limit cycle ones. Third, we develop a weakly nonlinear theory of the Kuramoto transition (a transition to collective synchrony) in an ensemble of globally coupled oscillators in presence of additional time-delayed coupling terms. We show that a linear delayed feedback not only controls the transition point, but effectively changes the nonlinear terms near the transition. A purely nonlinear delayed coupling does not affect the transition point, but can reduce or enhance the amplitude of collective oscillations.

My thesis is concerned with several new noise-induced phenomena in excitable neural models, especially those with FitzHugh-Nagumo dynamics. In these effects the fluctuations intrinsically present in any complex neural network play a constructive role and improve functionality. I report the occurrence of Vibrational Resonance in excitable systems. Both in an excitable electronic circuit and in the FitzHugh-Nagumo model, I show that an optimal amplitude of high-frequency driving enhances the response of an excitable system to a low-frequency signal. Additionally, the influence of additive noise and the interplay between Stochastic and Vibrational Resonance is analyzed. Further, I study systems which combine both oscillatory and excitable properties, and hence intrinsically possess two internal frequencies. I show that in such a system the effect of Stochastic Resonance can be amplified by an additional high-frequency signal which is in resonance with the oscillatory frequency. This amplification needs much lower noise intensities than for conventional Stochastic Resonance in excitable systems. I study frequency selectivity in noise-induced subthreshold signal processing in a system with many noise-supported stochastic attractors. I show that the response of the coupled elements at different noise levels can be significantly enhanced or reduced by forcing some elements into resonance with these new frequencies which correspond to appropriate phase-relations. A noise-induced phase transition to excitability is reported in oscillatory media with FitzHugh-Nagumo dynamics. This transition takes place via noise-induced stabilization of a deterministically unstable fixed point of the local dynamics, while the overall phase-space structure of the system is maintained. The joint action of coupling and noise leads to a different type of phase transition and results in a stabilization of the system. The resulting noise-induced regime is shown to display properties characteristic of excitable media, such as Stochastic Resonance and wave propagation. This effect thus allows the transmission of signals through an otherwise globally oscillating medium. In particular, these theoretical findings suggest a possible mechanism for suppressing undesirable global oscillations in neural networks (which are usually characteristic of abnormal medical conditions such as Parkinson′s disease or epilepsy), using the action of noise to restore excitability, which is the normal state of neuronal ensembles.

Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences.

Nonlinear multistable systems under the influence of noise exhibit a plethora of interesting dynamical properties. A medium noise level causes hopping between the metastable states. This attractorhopping process is characterized through laminar motion in the vicinity of the attractors and erratic motion taking place on chaotic saddles, which are embedded in the fractal basin boundary. This leads to noise-induced chaos. The investigation of the dissipative standard map showed the phenomenon of preference of attractors through the noise. It means, that some attractors get a larger probability of occurrence than in the noisefree system. For a certain noise level this prefernce achieves a maximum. Other attractors are occur less often. For sufficiently high noise they are completely extinguished. The complexity of the hopping process is examined for a model of two coupled logistic maps employing symbolic dynamics. With the variation of a parameter the topological entropy, which is used together with the Shannon entropy as a measure of complexity, rises sharply at a certain value. This increase is explained by a novel saddle merging bifurcation, which is mediated by a snapback repellor. Scaling laws of the average time spend on one of the formerly disconnected parts and of the fractal dimension of the connected saddle describe this bifurcation in more detail. If a chaotic saddle is embedded in the open neighborhood of the basin of attraction of a metastable state, the required escape energy is lowered. This enhancement of noise-induced escape is demonstrated for the Ikeda map, which models a laser system with time-delayed feedback. The result is gained using the theory of quasipotentials. This effect, as well as the two scaling laws for the saddle merging bifurcation, are of experimental relevance.