## Institut für Informatik und Computational Science

### Refine

#### Year of publication

#### Document Type

- Article (590)
- Doctoral Thesis (183)
- Monograph/Edited Volume (135)
- Conference Proceeding (19)
- Part of a Book (11)
- Master's Thesis (9)
- Other (5)
- Preprint (5)
- Habilitation (1)
- Postprint (1)
- Review (1)

#### Keywords

- Informatik (17)
- Didaktik (15)
- Ausbildung (13)
- Hochschuldidaktik (13)
- Maschinelles Lernen (7)
- answer set programming (7)
- E-Learning (6)
- Answer set programming (5)
- Antwortmengenprogrammierung (5)
- Computer Science Education (5)

#### Institute

"Deal of the Day" (DoD) platforms have quickly become popular by offering savings on local services, products and vacations. For merchants, these platforms represent a new marketing channel to advertise their products and services and attract new customers. DoD platform providers, however, struggle to maintaining a stable market share and profitability, because entry and switching costs are low. To sustain a competitive market position, DoD providers are looking for ways to build a loyal customer base. However, research examining the determinants of user loyalty in this novel context is scarce. To fill this gap, this study employs Grounded Theory methodology to develop a conceptual model of customer loyalty to a DoD provider. In the next step, qualitative insights are enriched and validated using quantitative data from a survey of 202 DoD users. The authors find that customer loyalty is in large part driven by monetary incentives, but can be eroded if impressions from merchant encounters are below expectations. In addition, enhancing the share of deals relevant for consumers, i.e. signal-to-noise ratio, and mitigating perceived risks of a transaction emerge as challenges. Beyond theoretical value, the results offer practical insights into how customer loyalty to a DoD provider can be promoted.

(Near-)inverses of sequences
(2006)

We introduce the notion of a near-inverse of a non-decreasing sequence of positive integers; near-inverses are intended to assume the role of inverses in cases when the latter cannot exist. We prove that the near-inverse of such a sequence is unique; moreover, the relation of being near-inverses of each other is symmetric, i.e. if sequence g is the near-inverse of sequence f, then f is the near-inverse of g. There is a connection, by approximations, between near- inverses of sequences and inverses of continuous strictly increasing real-valued functions which can be exploited to derive simple expressions for near-inverses

3D from 2D touch
(2013)

While interaction with computers used to be dominated by mice and keyboards, new types of sensors now allow users to interact through touch, speech, or using their whole body in 3D space. These new interaction modalities are often referred to as "natural user interfaces" or "NUIs." While 2D NUIs have experienced major success on billions of mobile touch devices sold, 3D NUI systems have so far been unable to deliver a mobile form factor, mainly due to their use of cameras. The fact that cameras require a certain distance from the capture volume has prevented 3D NUI systems from reaching the flat form factor mobile users expect. In this dissertation, we address this issue by sensing 3D input using flat 2D sensors. The systems we present observe the input from 3D objects as 2D imprints upon physical contact. By sampling these imprints at very high resolutions, we obtain the objects' textures. In some cases, a texture uniquely identifies a biometric feature, such as the user's fingerprint. In other cases, an imprint stems from the user's clothing, such as when walking on multitouch floors. By analyzing from which part of the 3D object the 2D imprint results, we reconstruct the object's pose in 3D space. While our main contribution is a general approach to sensing 3D input on 2D sensors upon physical contact, we also demonstrate three applications of our approach. (1) We present high-accuracy touch devices that allow users to reliably touch targets that are a third of the size of those on current touch devices. We show that different users and 3D finger poses systematically affect touch sensing, which current devices perceive as random input noise. We introduce a model for touch that compensates for this systematic effect by deriving the 3D finger pose and the user's identity from each touch imprint. We then investigate this systematic effect in detail and explore how users conceptually touch targets. Our findings indicate that users aim by aligning visual features of their fingers with the target. We present a visual model for touch input that eliminates virtually all systematic effects on touch accuracy. (2) From each touch, we identify users biometrically by analyzing their fingerprints. Our prototype Fiberio integrates fingerprint scanning and a display into the same flat surface, solving a long-standing problem in human-computer interaction: secure authentication on touchscreens. Sensing 3D input and authenticating users upon touch allows Fiberio to implement a variety of applications that traditionally require the bulky setups of current 3D NUI systems. (3) To demonstrate the versatility of 3D reconstruction on larger touch surfaces, we present a high-resolution pressure-sensitive floor that resolves the texture of objects upon touch. Using the same principles as before, our system GravitySpace analyzes all imprints and identifies users based on their shoe soles, detects furniture, and enables accurate touch input using feet. By classifying all imprints, GravitySpace detects the users' body parts that are in contact with the floor and then reconstructs their 3D body poses using inverse kinematics. GravitySpace thus enables a range of applications for future 3D NUI systems based on a flat sensor, such as smart rooms in future homes. We conclude this dissertation by projecting into the future of mobile devices. Focusing on the mobility aspect of our work, we explore how NUI devices may one day augment users directly in the form of implanted devices.

In recent years, there has been a large amount of disparate work concerning the representation and reasoning with qualitative preferential information by means of approaches to nonmonotonic reasoning. Given the variety of underlying systems, assumptions, motivations, and intuitions, it is difficult to compare or relate one approach with another. Here, we present an overview and classification for approaches to dealing with preference. A set of criteria for classifying approaches is given, followed by a set of desiderata that an approach might be expected to satisfy. A comprehensive set of approaches is subsequently given and classified with respect to these sets of underlying principles

Companies develop process models to explicitly describe their business operations. In the same time, business operations, business processes, must adhere to various types of compliance requirements. Regulations, e.g., Sarbanes Oxley Act of 2002, internal policies, best practices are just a few sources of compliance requirements. In some cases, non-adherence to compliance requirements makes the organization subject to legal punishment. In other cases, non-adherence to compliance leads to loss of competitive advantage and thus loss of market share. Unlike the classical domain-independent behavioral correctness of business processes, compliance requirements are domain-specific. Moreover, compliance requirements change over time. New requirements might appear due to change in laws and adoption of new policies. Compliance requirements are offered or enforced by different entities that have different objectives behind these requirements. Finally, compliance requirements might affect different aspects of business processes, e.g., control flow and data flow. As a result, it is infeasible to hard-code compliance checks in tools. Rather, a repeatable process of modeling compliance rules and checking them against business processes automatically is needed. This thesis provides a formal approach to support process design-time compliance checking. Using visual patterns, it is possible to model compliance requirements concerning control flow, data flow and conditional flow rules. Each pattern is mapped into a temporal logic formula. The thesis addresses the problem of consistency checking among various compliance requirements, as they might stem from divergent sources. Also, the thesis contributes to automatically check compliance requirements against process models using model checking. We show that extra domain knowledge, other than expressed in compliance rules, is needed to reach correct decisions. In case of violations, we are able to provide a useful feedback to the user. The feedback is in the form of parts of the process model whose execution causes the violation. In some cases, our approach is capable of providing automated remedy of the violation.

We consider the problem of representing arbitrary preferences in causal reasoning and planning systems. In planning, a preference may be seen as a goal or constraint that is desirable, but not necessary, to satisfy. To begin, we define a very general query language for histories, or interleaved sequences of world states and actions. Based on this, we specify a second language in which preferences are defined. A single preference defines a binary relation on histories, indicating that one history is preferred to the other. From this, one can define global preference orderings on the set of histories, the maximal elements of which are the preferred histories. The approach is very general and flexible; thus it constitutes a base language in terms of which higher-level preferences may be defined. To this end, we investigate two fundamental types of preferences that we call choice and temporal preferences. We consider concrete strategies for these types of preferences and encode them in terms of our framework. We suggest how to express aggregates in the approach, allowing, e.g. the expression of a preference for histories with lowest total action costs. Last, our approach can be used to express other approaches and so serves as a common framework in which such approaches can be expressed and compared. We illustrate this by indicating how an approach due to Son and Pontelli can be encoded in our approach, as well as the language PDDL3.

Mobile devices and associated applications (apps) are an indispensable part of daily life and provide access to important information anytime and anywhere. However, the availability of university-wide services in the mobile sector is still poor. If they exist they usually result from individual activities of students and teachers. Mobile applications can have an essential impact on the improvement of students’ self-organization as well as on the design and enhancement of specific learning scenarios, though. This article introduces a mobile campus app framework, which integrates central campus services and decentralized learning applications. An analysis of strengths and weaknesses of different approaches is presented to summarize and evaluate them in terms of requirements, development, maintenance and operation. The article discusses the underlying service-oriented architecture that allows transferring the campus app to other universities or institutions at reasonable cost. It concludes with a presentation of the results as well as ongoing discussions and future work

Many formal descriptions of DPLL-based SAT algorithms either do not include all essential proof techniques applied by modern SAT solvers or are bound to particular heuristics or data structures. This makes it difficult to analyze proof-theoretic properties or the search complexity of these algorithms. In this paper we try to improve this situation by developing a nondeterministic proof calculus that models the functioning of SAT algorithms based on the DPLL calculus with clause learning. This calculus is independent of implementation details yet precise enough to enable a formal analysis of realistic DPLL-based SAT algorithms.

This paper describes the proof calculus LD for clausal propositional logic, which is a linearized form of the well-known DPLL calculus extended by clause learning. It is motivated by the demand to model how current SAT solvers built on clause learning are working, while abstracting from decision heuristics and implementation details. The calculus is proved sound and terminating. Further, it is shown that both the original DPLL calculus and the conflict-directed backtracking calculus with clause learning, as it is implemented in many current SAT solvers, are complete and proof-confluent instances of the LD calculus.

A method of construction of combinational self-checking units with detection of all single faults
(1999)

We address the problem of belief change in (nonmonotonic) logic programming under answer set semantics. Our formal techniques are analogous to those of distance-based belief revision in propositional logic. In particular, we build upon the model theory of logic programs furnished by SE interpretations, where an SE interpretation is a model of a logic program in the same way that a classical interpretation is a model of a propositional formula. Hence we extend techniques from the area of belief revision based on distance between models to belief change in logic programs.
We first consider belief revision: for logic programs P and Q, the goal is to determine a program R that corresponds to the revision of P by Q, denoted P * Q. We investigate several operators, including (logic program) expansion and two revision operators based on the distance between the SE models of logic programs. It proves to be the case that expansion is an interesting operator in its own right, unlike in classical belief revision where it is relatively uninteresting. Expansion and revision are shown to satisfy a suite of interesting properties; in particular, our revision operators satisfy all or nearly all of the AGM postulates for revision.
We next consider approaches for merging a set of logic programs, P-1,...,P-n. Again, our formal techniques are based on notions of relative distance between the SE models of the logic programs. Two approaches are examined. The first informally selects for each program P-i those models of P-i that vary the least from models of the other programs. The second approach informally selects those models of a program P-0 that are closest to the models of programs P-1,...,P-n. In this case, P-0 can be thought of as a set of database integrity constraints. We examine these operators with regards to how they satisfy relevant postulate sets.
Last, we present encodings for computing the revision as well as the merging of logic programs within the same logic programming framework. This gives rise to a direct implementation of our approach in terms of off-the-shelf answer set solvers. These encodings also reflect the fact that our change operators do not increase the complexity of the base formalism.

Quantified Boolean formulas (QBFs) play an important role in theoretical computer science. QBF extends propositional logic in such a way that many advanced forms of reasoning can be easily formulated and evaluated. In this dissertation we present our ZQSAT, which is an algorithm for evaluating quantified Boolean formulas. ZQSAT is based on ZBDD: Zero-Suppressed Binary Decision Diagram , which is a variant of BDD, and an adopted version of the DPLL algorithm. It has been implemented in C using the CUDD: Colorado University Decision Diagram package. The capability of ZBDDs in storing sets of subsets efficiently enabled us to store the clauses of a QBF very compactly and let us to embed the notion of memoization to the DPLL algorithm. These points led us to implement the search algorithm in such a way that we could store and reuse the results of all previously solved subformulas with a little overheads. ZQSAT can solve some sets of standard QBF benchmark problems (known to be hard for DPLL based algorithms) faster than the best existing solvers. In addition to prenex-CNF, ZQSAT accepts prenex-NNF formulas. We show and prove how this capability can be exponentially beneficial.

In this article, we consider high-dimensional data which contains a low-dimensional non-Gaussian structure contaminated with Gaussian noise and propose a new linear method to identify the non-Gaussian subspace. Our method NGCA (Non-Gaussian Component Analysis) is based on a very general semi-parametric framework and has a theoretical guarantee that the estimation error of finding the non-Gaussian components tends to zero at a parametric rate. NGCA can be used not only as preprocessing for ICA, but also for extracting and visualizing more general structures like clusters. A numerical study demonstrates the usefulness of our method

Scheduling performance in computational grid can potentially benefit a lot from accurate execution time estimation for parallel jobs. Most existing approaches for the parallel job execution time estimation, however, require ample past job traces and the explicit correlations between the job execution time and the outer layout parameters such as the consumed processor numbers, the user-estimated execution time and the job ID, which are hard to obtain or reveal. This paper presents and evaluates a novel execution time estimation approach for parallel jobs, the user-behavior clustering for execution time estimation, which can give more accurate execution time estimation for parallel jobs through exploring the job similarity and revealing the user submission patterns. Experiment results show that compared to the state-of-art algorithms, our approach can improve the accuracy of the job execution time estimation up to 5.6 %, meanwhile the time that our approach spends on calculation can be reduced up to 3.8 %.