## Institut für Informatik und Computational Science

### Refine

#### Year of publication

#### Document Type

- Article (141)
- Monograph/Edited Volume (1)
- Conference Proceeding (1)

#### Keywords

#### Institute

We introduce a simple approach extending the input language of Answer Set Programming (ASP) systems by multi-valued propositions. Our approach is implemented as a (prototypical) preprocessor translating logic programs with multi-valued propositions into logic programs with Boolean propositions only. Our translation is modular and heavily benefits from the expressive input language of ASP. The resulting approach, along with its implementation, allows for solving interesting constraint satisfaction problems in ASP, showing a good performance.

Motivation: Continued development of analytical techniques based on gas chromatography and mass spectrometry now facilitates the generation of larger sets of metabolite concentration data. An important step towards the understanding of metabolite dynamics is the recognition of stable states where metabolite concentrations exhibit a simple behaviour. Such states can be characterized through the identification of significant thresholds in the concentrations. But general techniques for finding discretization thresholds in continuous data prove to be practically insufficient for detecting states due to the weak conditional dependences in concentration data. Results: We introduce a method of recognizing states in the framework of decision tree induction. It is based upon a global analysis of decision forests where stability and quality are evaluated. It leads to the detection of thresholds that are both comprehensible and robust. Applied to metabolite concentration data, this method has led to the discovery of hidden states in the corresponding variables. Some of these reflect known properties of the biological experiments, and others point to putative new states

The family of default logics
(1998)

We introduce formal proof systems based on tableau methods for analyzing computations in Answer Set Programming (ASP). Our approach furnishes fine-grained instruments for characterizing operations as well as strategies of ASP solvers. The granularity is detailed enough to capture a variety of propagation and choice methods of algorithms used for ASP solving, also incorporating SAT-based and conflict-driven learning approaches to some extent. This provides us with a uniform setting for identifying and comparing fundamental properties of ASP solving approaches. In particular, we investigate their proof complexities and show that the run-times of best-case computations can vary exponentially between different existing ASP solvers. Apart from providing a framework for comparing ASP solving approaches, our characterizations also contribute to their understanding by pinning down the constitutive atomic operations. Furthermore, our framework is flexible enough to integrate new inference patterns, and so to study their relation to existing ones. To this end, we generalize our approach and provide an extensible basis aiming at a modular incorporation of additional language constructs. This is exemplified by augmenting our basic tableau methods with cardinality constraints and disjunctions.

Significant inferences
(2000)

We present a general approach for representing and reasoning with sets of defaults in default logic, focusing on reasoning about preferences among sets of defaults. First, we consider how to control the application of a set of defaults so that either all apply (if possible) or none do (if not). From this, an approach to dealing with preferences among sets of default rules is developed. We begin with an ordered default theory, consisting of a standard default theory, but with possible preferences on sets of rules. This theory is transformed into a second, standard default theory wherein the preferences are respected. The approach differs from other work, in that we obtain standard default theories and do not rely on prioritized versions of default logic. In practical terms this means we can immediately use existing default logic theorem provers for an implementation. Also, we directly generate just those extensions containing the most preferred applied rules; in contrast, most previous approaches generate all extensions, then select the most preferred. In a major application of the approach, we show how semimonotonic default theories can be encoded so that reasoning can be carried out at the object level. With this, we can reason about default extensions from within the framework of a standard default logic. Hence one can encode notions such as skeptical and credulous conclusions, and can reason about such conclusions within a single extension

Preferred well-founded semantics for logic programming by alternating fixpoints : preliminary report
(2002)

In this paper, we show how an approach to belief revision and belief contraction can be axiomatized by means of quantified Boolean formulas. Specifically, we consider the approach of belief change scenarios, a general framework that has been introduced for expressing different forms of belief change. The essential idea is that for a belief change scenario (K, R, C), the set of formulas K, representing the knowledge base, is modified so that the sets of formulas R and C are respectively true in, and consistent with the result. By restricting the form of a belief change scenario, one obtains specific belief change operators including belief revision, contraction, update, and merging. For both the general approach and for specific operators, we give a quantified Boolean formula such that satisfying truth assignments to the free variables correspond to belief change extensions in the original approach. Hence, we reduce the problem of determining the results of a belief change operation to that of satisfiability. This approach has several benefits. First, it furnishes an axiomatic specification of belief change with respect to belief change scenarios. This then leads to further insight into the belief change framework. Second, this axiomatization allows us to identify strict complexity bounds for the considered reasoning tasks. Third, we have implemented these different forms of belief change by means of existing solvers for quantified Boolean formulas. As well, it appears that this approach may be straightforwardly applied to other specific approaches to belief change